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Twisted patterns in large subsets of 7LN

Michael Björklund and Kamil Bulinski

Abstract. Let E C ZN be a set of positive upper Banach density, and let F < GEn(Z) be a

"sufficiently large" subgroup. We show in this paper that for each positive integer m there exists

a positive integer k with the following property: For every {a\,... ,am} C kZN, there are

Yi Ym T and b e E such that

We use this "twisted" multiple recurrence result to study images of E — b under various
T-invariant maps. For instance, if N > 3 and Q is an integer quadratic form on Z N of signature

(p. q) with p. q > 1 and p + q > 3, then our twisted multiple recurrence theorem applied to
the group T SO(Q)(Z) shows that

for every F C k ZN with m elements. In the case when E is an aperiodic Bohr0 set,

we can choose b to be zero and k 1, and thus Q(ZN) C Q(E). Our result is derived
from a non-conventional ergodic theorem which should be of independent interest. Important
ingredients in our proofs are the recent breakthroughs by Benoist-Quint and Bourgain-Furman-
Lindenstrauss-Mozes on equidistribution of random walks on automorphism groups of tori.

Mathematics Subject Classification (2010). 37A45; 11P99, 37A30.

Keywords. Multiple recurrence, equidistribution, invariants.

1. Introduction

We begin by recalling the following classical result of Furstenberg and Katznelson [10]
The upper Banach density of a subset E c 7LN will be defined in Appendix A.

Theorem 1.1. Suppose that E c Z has positive upper Banach density. Then, for
every finite set F C ZN, there exists a positive integer k such that

The case N 1 corresponds to Szemerédi's celebrated theorem on arithmetic
progressions.

Yi aj e E — b, for all i 1,..., m.

k2Q(F) c Q(E-b),

kF C E — b, for some b e E. (1.1)
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This is an archetypal result in Arithmetic Ramsey theory. We stress the order of
the quantifiers; the integer k heavily depends on the finite set F. In this paper we
shall prove a "twisted" analogue of Furstenberg-Katznelson's Theorem, for which
the dependence between the integer k and the set F disappears. To motivate this line
of study, we begin by giving three applications.

1.1. Quadratic forms. A very influential result in Geometric Ramsey theory by

Furstenberg, Katznelson and Weiss [11] asserts that if E C RN is a Borel set with
positive density in the sense that

Leb(£n £(/?))
hm sup jxn > °-
R->oo K

where Leb denotes the Lebesgue measure on and B(R) denotes the Euclidean
ball of radius R around the origin, then there exists Ra > 0 such that

D(E) {||x-y||2 : x,y E) D [R0,oo),

where || • || denotes the Euclidean norm on R^. In other words, all sufficiently large
Euclidean distances are realized within the set E. Recently, Magyar [13] established
the following discrete analogue of this phenomenon.

Theorem 1.2 ([13, Theorem 1]). Fix an integer N > 5 and let

Q{x= x2 H 1-4-

Then, for every subset E C ZN ofpositive upper Banach density, there exist positive
integers R0 and k such that

k2Z n [Ra.oo) C Q(E - E).

Our first application consists of an analogue of Magyar's result for indefinite
quadratic forms. Contrary to Magyar's result, we focus here not on the values of Q
restricted to a difference set of a set £ C ZN of positive upper Banach density,
but rather we study the values of Q restricted to some translate of the set E. We

stress that our techniques do not apply to the quadratic forms in Magyar's Theorem
as the (real points) of the symmetry group SO(N) is compact. For the notion of an

(aperiodic) Bohr set we refer the reader to Section 3.

Theorem 1.3. Let p, q > 1 and p + q > 3 and E C Zp+q a set ofpositive upper
Banach density. Let Q be a quadratic form on W\p+q ofsignature p. q) with integer
coefficients. Let m be a positive integer. Then there exists a positive integer k with
the property that for every finite subset F C Zp+q with |F| m, we have

k2 Q(F) C Q(E — b), for some b e E.

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an

aperiodic Bohr0-iet, then Q(E) Q(7Lp+q).
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1.2. Characteristic polynomials and their Galois groups. Our second example
concerns characteristic polynomials of integer square matrices with zero trace. Let

MaO(Z) denote the additive group of integer matrices, and define the subgroup
Ad < Matrf(Z) by

Arf [a e Mat^(Z) : tr(a) 0}.

Given a matrix a e A^, we write U(ö) det(t/ — a) e Z[t] to denote

its characteristic polynomial. We note that the map U : Ad -> Z[t] satisfies

U(yay_1) U(a) for all a Aj and y e GLj(Z).

The following theorem is an extension of a very recent result by the first author
and A. Fish in the paper [4], to which the current paper owes the initial ideas.

Theorem 1.4. Let d > 2 and E C A(i a set ofpositive upper Banach density. Let m
be a positive integer. Then there exists a positive integer k with the property thatfor
every finite subset F C Aj with F| m, we have

'C(kF) C ~(E — b). for some b e E.

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an

aperiodic Bohr0-set, then (E) — 'C(Ad).

Remark 1.5. During the finalization of this paper, the authors were informed by
A. Fish that he had independently proved the last assertion in Theorem 1.4 (concerning
aperiodic Bohr0 sets); see [7].

Given a e Ad, we denote by Qa the field generated by the eigenvalues of a, or
equivalently, the splitting field of the polynomial IS (a). We note that

Q/ta Qa and Qyay-1 Qa, for all k e Q* and y e GL^(Z).

Given P e. Z[t], we let §(P) denote the Galois group (over Q) of the splitting
field of P. Thus ~§ÇC(a)) is the Galois group of the field extension Qa/Q. Since

each ~(a) is a monic polynomial of degree d, we see that each is a

subgroup of the symmetric group Sj. Let ~§d denote the set of all possible subgroups

§Ç(a)) < SJ as a ranges over Aj. From the relations above, we see that

sçeoca)) S ce (a)) and gÇCiyay-1)) «(E(a)),
for all k e N* and y e GL</(Z).

Let F C ZN be a finite set such that ê(F) Upon applying the map S

to the sets e(kF) and 'C(E ~ b) in Theorem 1.4, we have established the following
corollary. We stress that this result also follows from Furstenberg-Katznelson's
Theorem mentioned in the beginning of the introduction.

Corollary 1.6. Let d > 2 and suppose that E C Aj is a set ofpositive upper Banach

density. Then there exists b E such that ffi C § ÇC{E —b)), i. e. all possible Galois

groups can be found in some translate of E.
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This result should be compared with Gallagher's Theorem [12] which asserts that
"most" irreducible monic polynomials with integer coefficients have Galois group Sj

1.3. Determinants of symmetric matrices. Our final example involves determinants

of symmetric integer matrices. We let Symrf — {a e Mat^(Z) | a a'}
denote the set of all symmetric d x d integer matrices.

Theorem 1.7. Let d > 2 and E C Sym^ a set ofpositive upper Banach density.
Let m be a positive integer. Then there exists a positive integer k with the property
thatfor every finite subset F C Sym^ with |£| — m, we have

kd det(F) C det(£ — b), for some b E.

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an
aperiodic Bohr0-se?, then det(£') — Z.

In particular, let Ea C Z be an aperiodic Bohr0-set, and define

E {(z y) : x.y,z E0} C Sym2

Then £ is a Bohr0-set in Sym2 Z3 to which Theorem 1.7 can applied to yield the

following corollary.

Corollary 1.8. Suppose that E0 C Z is an aperiodic Bohr0-set. Then,

{xy — z2 : x, y,z e Ea} Z.

1.4. Invariant patterns in sets of positive upper Banach density. We now turn to

generalizing the three examples above. The main idea is that the functions presented
in those examples (the quadratic forms, the characteristic polynomial map and the

determinant map) are all invariant under certain linear actions. More specifically,
the quadratic form Q in Theorem 1.3 is preserved by SO(0)(Z); the characteristic

polynomial map G and the Galois group map ~§ on are both preserved by the

conjugation action of SL^ (Z) on Aj ; while the determinant map is preserved by the

action of SL</(Z) on Sym^ given by y • a yay'. One of the main goals of this

paper is to establish the following general result, to which the examples above apply
(this will be verified in Appendix B).

Definition 1.9. A subgroup T < GLyv(lR) is said to be strongly irreducible if for

every finite index subgroup T' < T, the standard representation of T' on RN is
irreducible. We say that a Zariski connected real algebraic group G has no compact
factors if every Zariski-continuous group homomorphism p : G -> GLr(M) with
bounded image is trivial (cf. Section 2 in [2]). To avoid confusion when necessary
(in Appendix B), the usual Lie group theoretic compact factors will be referred to as

the compact Lie group factors.
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Theorem 1.10. Let T < GLjv(Z) be a non-trivial finitely generated strongly
irreducible subgroup whose Zariski closure in GLat(M) is a Zariski connected

semisimple group with no compact factors. Let Y be a set and suppose that
vfi : ZN —r Y is a T-invariant function. For every E C ZN of positive upper
Banach density and m > 1, there exists a positive integer k with the property that
whenever F C ZN is a finite set ofcardinality m, then

^(kF) C vp(ii — b). for some b e E.

Moreover, if E C ZN is an aperiodic Bohr-.vet, then k can be chosen to be 1. In
particular, if E is an aperiodic BohrQ-set, then &(£) ^(ZN).

The following result is an immediate consequence of Theorem 1.10, and

generalizes the main result in [4],

Corollary 1.11. Let r and vF be as in Theorem 1.10 and suppose that E C ZN has

positive upper Banach density. Then there exists a positive integer k such that

vi>{kZN) C vi>(£ - E).

1.5. Twisted multiple recurrence. Theorem 1.1 Ois derived from a "twisted" multiple

recurrence result for ergodic Z -actions which we shall now state. Let (X, v) be

a Borel probability measure space, i.e. X is a Borel subset of a compact and second

countable space X, and v is a probability measure on the restriction of the Borel
a-algebra on X to X. Suppose that ZN acts on X by Borel measurable bijections,
which preserve v. In this case we refer to (X, v) as a ZN-space. We say that (X. v)
is ergodic if whenever B C X is a Borel set which is invariant under ZN, then B is

either a v-null set or a v-conull set.

We note that one can always associate to any ZN-space a unitary representation

tlx of ZN on the Hilbert space L2(X, u) via

(nx(a)f)(x) /((—a)-x), fora e ZN and / e L2(X, v).

Given a character / on ZN, we write

L2(X, v)x {/ L2(X, v) : nx(a)f X(a)f} C L2(X, v).

We say that / is a rational character if there exists a positive integer m such that

X(ma) 1 for all a e ZN. The set of all rational / for which L2(X,v)x is

non-zero is called the rational spectrum of the Z^-space {X, v). Since the constant
function 1 is fixed by nx, we note that the rational spectrum always contains the

trivial character 1. If there are no other elements in the rational spectrum, we say
that the rational spectrum is trivial.

Theorem 1.12. Let (X, v) be an ergodic ZN-space and suppose that B is a Borel
set in X. Let F be as in Theorem 1.10. For every e > 0 and integer m > 1, there
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exists a positive integer k with the property that whenever a\,... ,am are elements
in k ZN, then then there are yi, ,ym e T such that

m

v(P| (yjaj)-B)>v(Br-s.
7 1

If the rational spectrum of the ZN-space (X, v) is trivial, then k can be chosen to
be 1.

In Appendix A we outline how the following result can be deduced from
Theorem 1.12. For the connection between trivial rational spectrum and aperiodic
Bohr sets we refer the reader to Section 3.

Corollary 1.13. Let E C ZN be a set ofpositive upper Banach density and m > 1.

Let T be as in Theorem 1.10. For every s > 0, there exists a positive integer k
with the property that whenever a\,... ,am are elements in k ZN, then there are

yi...., ym e T such that

m

d*(Ç\(E-yjaj))>d*(ET -s.
7 1

IfE is an aperiodic Bohr set, then k can be chosen to be 1.

1.6. Proof of Theorem 1.10 using Corollary 1.13. Let Y beasetand ip : ZN —> Y

be a T-invariant function. Let E C ZN be a set of positive upper Banach density and

e > 0 and let m be a positive integer. By Corollary 1.13 we can now find a positive
integer k with the property that for all a\,..., am e kZN, there are y\,..., ym e T
such that

m

d*(ED p| (E-yjUj)) >d\E)m+l-e,
7 1

If £ < d*(E)m+1, then the left hand side is positive, and we can find b E such

that

b + yjüj e E, for every j 1,... ,m.

In particular, ^>{yjüj) ty(E — b) for each j. Since a\ ,am e kZN
are arbitrary, this finishes the first part of the proof. Finally, by the second part of
Corollary 1.13, if E C ZN is an aperiodic Bohr0-set, then the integer k above can
be chosen to be 1.

1.7. A non-conventional mean ergodic theorem. The proof of Theorem 1.12 will
use as a black box some recent deep results by Benoist and Quint from the papers [ 1 ]

and [3]. The following definition will be useful.
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Definition 1.14 (BQ-pair). Let T < GL^(Z) be a non-trivial finitely generated
irreducible subgroup and let p be a finitely supported probability measure on T

whose support generates F as a semigroup. We say that (T, p) is a BQ-pair if
the Zariski closure of T is a Zariski-connected semisimple algebraic group with no

compact factors.

Let (Jf. 7r) be a unitary ZN-representation on a separable Hilbert space IF. Given
a character / on ZN, we define

IFX — \v e IF : n(a)v /(a)v, for all a e ZN}.

The rational spectrum of (IF. ti) is defined as the set of all rational characters on ZN
for which Jtx is non-zero. We say that the rational spectrum is trivial if it is either

empty or only consists of the character 1. Finally, we denote by <Fràl the linear

span of IFX, as / ranges over the rational spectrum, and we write IFG for the linear

subspace of ?r(G)-invariant vectors in IF.
Suppose that /z is a probability measure on T. We define

F*j(y) ^P(Yi)-~ß(Yj)' f°r j > 1,

where the sum is taken over all y-tuples (yi >> Yj) such that Yi " • Yj Y

Our main technical result in this paper can now be stated as follows.

Theorem 1.15. Let (T, p) be a BQ-pair and let (Jf, n) be a unitary ZN-representation.

For every a 6 ZN and v e M, the limit

Qav := (Y)n(ya)v),
n

j=1 yer

exists in the norm topology on M. Furthermore, for every e > 0 and v e M, there

exists a positive integer k with the property that whenever a e kZN, then

I QaV~ FrMV I < £,

where PrM denotes the orthogonal projection onto Jfrat. If the rational spectrum
of (IF. 7r) is trivial, then Qa coincides with the orthogonal projection onto the space
ofn-invariant vectors, for all a ZN \ {0}.

1.8. Proof of Theorem 1.12 using Theorem 1.15. Let (X, v) be an ergodic ZN-
space and let (L2(X, v), nx) be the associated Z^-representation as in Subsection

1.5. Since (X, v) is ergodic, we see that all ttx-invariant elements are

(v-essentially) constant functions. Let f — Lb ^ L2(X, v) be the indicator function
of a measurable non-null set B C X, and define

{Q{"]/)(*) ^ YI (^2F*J(Y){nx(Ya)f)(x)y for a e ZN.
11

z l yeT
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Let /„I Pmif and fix m e N and e > 0. By Theorem 1.15 and the fact that Prat

can be expressed as a conditional expectation (see §7.4 in [6]), we know that:

• There exists a positive integer k such that for all a e kZN \ {0}, and sufficiently
large n, we have

llßiB)/lloo<l and ||ô(")/-/rat||<±.
m

• We have

0 < /rat <1 and f /rat dv f f dv.
Jx Jx

• If the rational spectrum of (A7 v) is trivial, then Qa Pm and Qaf fx f dv
for all non-zero a e ZN. In particular, the integer k above can be chosen to be

one.

Now fix a i,..., am e kZn. Hence, for some sufficiently large n, we have

f Qg>f(x)-Q%f(x)dv(x)> f fZ~sfsdv-£,
J X v X

where 5 denotes the number of a,-'s equal to zero (note that Q0f /). if s > o

then, since fr~s 7/at and fs — /, we have

f /,;-'/*<*» / fral~*f dv/ fZ~'+ idv> f /»</„.
Jx Jx Jx Jx

Hence in either case we have

f eS"'/w • •• Q'zlfw d>>(x) > f fZ J» - s

>(fxU
where in the second to last step we used Hölder's inequality. Upon writing out the

definitions of the operators Qi"\ and using that / is non-negative, we see that not
all terms in the expansions can be less than the right hand side, and thus, for all
a i am 6 kZN, we can find yi ym T such that

/((—yi«i) -x)--' f((-ymam)-x)dv(x) > (J^fdv^j -s,

which gives Theorem 1.12.
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2. Proof of Theorem 1.15

Let Tn denote the set of all homomorphisms from ZN into S1 {z C* : |z| 1},
and note that GLjv(Z) acts on by

X(y_1a)' for X e and y GLjv(Z).

Given /eT" and T < GLtv(Z), we define

rx {y e r : y*x x) < r.

We recall that an element / G T ^ is called rational if there exists a positive integer m
such that x(ma) 1 f°r a e

Lemma 2.1. Suppose that F < GLjv(Z) is infinite1 and strongly irreducible and

X G TN. Then the index |T : rx] is finite ifand only if x is rational.

Proof. Suppose that [r : T^] is finite, hence Tx is non-trivial as T is infinite. Then

A ker/ < ZN is anon-trivial rz-invariant subgroup, and thus V A®1 <
is a non-trivial -invariant linear subspace. By strong irreducibility of T, we have

V RN, and thus A must have finite index in ZN. Let m be the order of ZN /A.
Then we have /m 1, and thus x is rational.

Suppose that x is rational. Then A ker/ < ZN has finite index, and T acts

on the finite set Im / ^ ZN/A, which shows that T^ Stabp A has finite index
in T.

The main technical ingredient in the proof of Theorem 1.15 is the following deep
result by Benoist and Quint; see Théorème 1.3 in [1] and Corollary 1.10b) in [3]. If T

in addition contains an element with a dominant eigenvalue of multiplicity one, then

this result was established earlier by Bourgain, Furman, Lindenstrauss and Mozes;
see Theorem B in [5].

Theorem 2.2. Let (T, ß) be a BQ-pair. For every / e and a G ZN \ {0}, we

have
1

"

H„m ~ ]C X(ya)p*J (y)) 0.
n

7=1 yeT

if[T : rx] oo, and

l é J2 x(ya)p*j(y)) rr x(y°),
7=1 yer

L " xi yerz\r

'/[r : rx] < oo.

'This is satisfied for T coming from a BQ pair: If T is non-trivial and has Zariski connected Zariski
closure, then it must be infinite.
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Remark 2.3. We stress that Theorem 2.2 is not explicated in neither of the papers [1]
or [3]. Under the assumption that (T. p) is a BQ-pair, Corollary 1.10b) in [3] asserts
that for every / T®, there exists a T-invariant Borel probability measure on vx
on T N, supported on the closure of the T-orbit of /, such that for every continuous
function / : T N —> C, we have

\ { f dvx.
k=1 yer JJ1

By Théorème 1.3 in [ 1 ], vx is either the counting probability measure on a the (finite)
T-orbit of x in (in which case the index [F : Tx] is finite), or it is equal to the
Haar probability measure on T^. We get Theorem 2.2 by letting /(/) /(a) for
a ZN.

Let (Jf. n) be a unitary Z^-representation on a separable Hilbert space M. Given

X T^, we recall that we by Mx denote the Hilbert sub-spaces

J(x — {v e J : 7i(a)v — x(a)v< f°r all a e %N}-

One readily verifies that if xi and xi are distinct elements in T^, then MX] and MX2

are orthogonal subspaces in M. Since M is separable, we conclude that there is a

possibly empty, but at most countable, set £2 C such that Jfx is'a non-trivial
subspace for / £2. The set of rational elements in £2 will be denoted by 31^, which
we shall refer to as the rational spectrum of (Jf, n), and we write

^rat © C X,
X^N

where the direct sum is taken in the Hilbert space sense. The following lemma
is an immediate consequence of the definitions above and the second assertion in
Theorem 2.2, so we omit the proof.

Lemma 2.4. For every v Mm and a ZN, we have

lim^£(£/r*y(KMya)u)= £ (-£ x(Y"))vx
7 1 yer XtRN /J yerx\r

where v ^2 vx and vx e 3tx.

The full force of Theorem 2.2 is released in the proof of the following lemma.

Lemma 2.5. For every v e and a ZN \ {0}, we have

• n

lim - ^ ^ ^ p*J (y)n(ya)vj — 0.
H

y=i yer
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Proof. Let v e with ||u|| 1. By Bochner's Theorem, there exists a Borel^rat

probability measure r\ on TN such that

>,v) I
JT

(ji(a)v,v) I x(a)drl (/), forallûreZ^.
IjN

We observe that, by an application of von-Neumann's mean ergodic theorem to the

rx)unitary ZN-representation (J( ,nx) given by

nx(a)v — x(a) 1n(v) for a ZN and v 6 M.

we have that 0 for every rational We note that

" 7=1 yeT
•/TA' n

7=1 yer

for all /?. By Lemma 2.1, we have [F : Tz] oo for every irrational / and

[F : Tx] < oo for every rational / Hence, by Theorem 2.2, we conclude that the

right-hand side above converges to

X 1

rr !r i X x(ya) I »?({*}) 0,

xetRN
L • xi yerx\r

since ??({/}) 0 for all y e IRn which finishes the proof.

Upon combining Lemma 2.4 and Lemma 2.5, we conclude that the limits

1 "
Q°v X (X^*7^71"^17)

n
7=i y

exist for every v e J( and a ZN \ {0}, and

2«"= E (jfrfn E x(ra))vx.
X&&N

1 *J yer^\r

where Pmv — J2vx an<^ vx e ^x- particular, if IRn is trivial, i.e. if JIn is

either empty or consists solely of the trivial character 1, then Qa coincides with the

orthogonal projection onto the closed subspace of 7r(G)-invariant elements in M.

The second assertion of Theorem 1.15 follows from the following lemma. Here,
Prat denotes the orthogonal projection onto 3in{.

Lemma 2.6. For every s > 0 and v M, there exists a positive integer k such that

II Qa v — Fratu I < e, for all a e kZN \ {0}.
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Proof. Since Qa 0 on it suffices to prove the lemma for v 6 Pick s > 0

and v e Jfrat and choose a finite set F c R w such that

im2 <e2-

XÏF

Since F is a finite set, we can find at least one positive integer k such that x(ka) — 1

for all / e F and a e ZN. We note that this implies that Qka^x vx f°r
a 6 ZN, and thus

\\QaV-v\\ I J2 Q"VX I < ll^ll2)2 < F
xftF x£F

since ||Qai>|| < IMI for all v M and QaMx C for all / e JIn- D

3. Bohr sets and rational spectrum

We say that F C ZN is a Bohr set if there exist a compact and second countable
abelian group K with Haar probability measure mx, a homomorphism r : ZN —> K
with dense image, and a non-empty open set U C K with mx(U) — mxiU) such

that F r-1(t/). If K is connected, we say that E is aperiodic, and if U contains
the identity element of K, we say that B is an aperiodic Bohr0 set. We note that if
B C ZN is any aperiodic Bohr0-set, then one can always find another Bohr0-set C
such that C — C C B.

Example 3.1. We give here an example of an aperiodic Bohr set in Z. Let K M/Z
and suppose that û is an irrational number. Then r(a) — a û mod 1 is a

homomorphism from Z into K with dense image. Let U C K be an open subset,

e.g. an open interval. Then

B r~l(U) [a Z : a û mod 1 U} C Z

is an aperiodic Bohr set in Z. More generally, for every integer N, we can form the

homomorphism r# : ZN —> KN defined by

r(ai,...,aN) (z(ai),..., r(aN)), for (ai,... ,aN) <= ZN.

One can readily check that tn has dense image in KN, and thus

B x ••• x B xül(U x x U) C ZN

is an aperiodic Bohr0-set in ZN.

We can make (K. ma) into a Z^-space with the Z^-action defined by

a • x x — r(a), for x e K and a e ZN.
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We denote by txk the regular representation of ZN on L2{K, mx) and given x TN,
we define

L2(K.mK)x {/ <= L2(K, niK) : nK(a)f x(a)f}-

Let K denote the dual of K. We can view r) e K as an element in L2(K, mk) with
the property that njc(a)r) rj(r(a))r] for all a e ZN. Note that if rj2 e K satisfy

o r /)2 o r, then rj\ r]2 since the image of r is dense. In particular, for every
X e of the form / r] o x, we have

L2(K,mK)x C-r1.

Since all rj are orthogonal to each other in L2(K, mk), and together span L2(K, itik),
we conclude that

L2(K,mK) @L2(K,mK)vor,
r)<=K

where the direct sum is taken in the Hilbert space sense. Suppose that / rj o r is

rational, i.e. assume that there exists a positive integer in such that 1. Then,

X(a)m r}(mr(a)) T)(z(ma)) — 1, for all a e ZN,

and thus r)(k) — 1 for all k e L, where L := r(mZN) < K, by continuity of rj.
One readily shows that L has finite index in K and thus is an open subgroup of K.
In particular, if K is connected, then L K, and rj 1, which establishes the

following lemma.

Lemma 3.2. Let K be a compact and connected abelian group and suppose that
z : ZN —»• K is a homomorphism with dense image. Then the associated ZN-space
(K, mk) has trivial rational spectrum.
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A. Correspondence principle

We shall now explain how one can deduce Corollary 1.13 from Theorem 1.12. The

arguments in this section are nowadays rather standard, and can be traced back to the

seminal paper [9] by Furstenberg.
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Suppose that E C ZN. We may view E as an element in the compact and second

countable space 2Z of all subsets of ZN equipped with the product topology, on
which ZN acts by homeomorphisms via

a A A — a, for A e 2lN and a 6 ZN.

Let X denote the closure of ZN • E in 21". Then X is again a compact and second

countable space, and

V {A 6 X : 0 A) C A, (A.l)

is a clopen (closed and open) subset of X. We note that E — {a e ZN : a- E V}.
In other words, E can be realized as the "hitting times" of the set V of the Z^-orbit
of £ in A.

More generally, let X be a compact and second space, equipped with an action
of ZN by homeomorphisms. Given a subset U C X and x e X, we define

Ux {a zZN : a -x e U) C ZN.

For instance, if K is a compact and connected second countable group, r : ZN -> K
is a homomorphism with dense image and (K, mk) denotes the associated Z^-space
defined in Section 3, then for any non-empty open subset U c K, we see that

U0 {a 6 ZN : t(a) -U} r~\-U) C ZN (A.2)

is an aperiodic Bohr set. Since K is connected, the Z -space (K./nx) has trivial
rational spectrum by Lemma 3.2.

Let Fn [—n,n] C ZN and define the upper Banach density of a subset

E C ZN by

i * / rr\ \En(Fn+an)\ N\d (E) sup < hmsup — : (an) is a sequence in Z >.
' n \Fn\

In particular,

d*(E) > lim sup for all E C ZN.
n I En I

Let SP^n (A) denote the (non-empty) convex set of Zw-invariant Borel probability
measures on the compact and second countable space X. The following proposition
can now be deduced from Theorem 1.1 in [9],

Proposition A.l. Suppose that U C X is open and x0 X has a dense ZN-orbit
in X. Then,

a&F aeF



Vol. 92 (2017) Twisted patterns in large subsets of ZN 635

for every finite set F C ZN andv P^NiX). Furthermore, ifv(U) v{U) for all
v PftN, then

d*{fJXo) v(U), for some ergodic v e 33zn(X).

A.l. Proof of Corollary 1.13. Suppose that (A, u) is a compact and second

countable ZN-space, and let U C X be a non-empty open set such that v{U) v{U)
for all v e !Pzn (V). For instance, we could choose:

• X to be the orbit closure of the set E C ZN and U — V as in (A.l). In this case,
U is a non-empty clopen set, and there exists an ergodic v tPZN (X) such that

d*(E) d*(UE) v(U).

• A to be a compact, connected and second countable group, z : ZN —> K a

homomorphism with dense image and (X, v) (K, mE) theZ^-space associated

to (K, x) as in Section 3. In this case, mE is the unique Z^-invariant Borel

probability measure on K. In particular, for any open subset such that mjc{U)
we have c?*(r_1(^)) and E — t-1(I7) is an aperiodic Bohr

set.

Let T < GLjv(Z) and a\,... ,am e ZN. In the first case above, Proposition A.l
guarantees that

m m

d*(E) v(V) and Q (E - Pjfly)) > Q(yjaj) • v),
7=1 7=1

for all yi ym, and in the second case above, Proposition A. 1 asserts that

m m

d*(E) mK(U) and d* Q (r_1((7) - Yjüjj) > mK Q (yjaj) (/),
7=1 7=1

for all yi ym.

Let T be as in Theorem 1.10 and suppose that (X, v) and U are as in one of the

two examples above. Let e > 0 and let m be a positive integer. By Theorem 1.12,

there exist a positive integer k with the property that whenever a\,... ,am 6 kZN,
then

m

•(n (yjüj) > v(U)m — e, for some yi ,ymeT. (A.3)
7 1

Furthermore, if (A, v) has trivial spectrum, as in the second example above (by
Lemma 3.2), then k can be chosen to be 1.
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Upon combining the bounds above, we conclude that for all a\,...,am 6 kZN,
we have

m

d*( Pi (E - Yjdj)) > d*(E)m - e, for some yi Ym 6 T.

j=i
In the case when (X, v) (K, ma), the integer k can be chosen to be 1.

B. Verifying the conditions for a BQ-pair

We now verify that our examples satisfy the conditions of a BQ-pair. Note that in
each of our examples we have a polynomial group homomorphism p : G —> SL# (M)
for some Zariski closed subgroup G < GL^(E), which then defines an action of G

on E^ given by g v p(g)v. For example, in Theorem 1.4 we consider the adjoint
representation Ad : SLj(K)) —> GL(sQ(R)), given by

Ad(g)u gvg-1 for g SL^(E) and v e sQ(E),

where sQ(E) is the real vector space of real d x d traceless matrices. In other
words, Theorem 1.4 is obtained from Theorem 1.10 by setting T Ad(SL^(Z))
(and identifying Ad with Zd~~x). The following Proposition ensures that such a

representation p preserves certain algebraic conditions in the definition of a BQ-pair.

Proposition B.l. Let p : G -» SLtv(IR) be a polynomial homomorphism, where
G C SLrf (E) is a Zariski connected semisimple Lie group with no compact algebraic
factors. Then for Y < G Zariski dense, we have that the Zariski closure of p(Y) is a

Zariski connected semisimple Lie group with no compact algebraic factors.

z
Proof. By Zariski-continuity, p{G) < p(Y) and in fact it is classical that [p(G) :

z
p(T) ] is finite (see for example Corollary 4.6.5 [16]). Hence p(G) being semisimple

z z
implies that p(T) also is. Again by Zariski continuity of p, we have that p(T)

z
is Zariski connected. Finally, suppose that k : p(T) -> GLd(E) is a bounded

algebraic group homomorphism (for some D), then so is k o p and so /c(p(G)) is the
z

trivial subgroup. Thus p(G) < ker k < p(T) But since ker/c is Zariski closed we
z

have that it is equal to p(T) so there are no compact factors.

B.l. Algebro-geometric properties. We now turn to determining the Zariski
closures of SL^(Z) and SO(<2)(Z) and verifying the required algebro-geometric
properties (In this appendix, Q will always denote a quadratic form as in
Theorem 1.3.). We first note the crucial fact that the groups SL^(Z) and SO(Q)(Z)
are, respectively, lattices in SL^(E) and SO(£))(E) (See Theorem 5.1.11 and
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Example 5.1.12 in [15]). We also note that, as required by our main theorems, these

lattices are finitely generated (See Theorem 4.7.10 in [15] or Chapter IX in [14]). We

will demonstrate below, via Borel's density theorem, that these lattices are Zariski
dense. We remark the technicality that we use the following formulation of Borel's

density theorem (not explicated in [8] as it demands that G is connected), which
follows immediately from a combination of (4.5.1) in [15] and (4.5.2) in [16].

Theorem B.2 (Borel's density theorem). Let G < SLjy(R) be a Zariski connected

semisimple Lie group (in particular, it has finitely many connected components) with

no compact Lie group factors. Then any lattice in G is Zariski dense.

Lemma B.3. The group SL^(R) is the Zariski closure o/SLj (Z) and is a Zariski-
connected semisimple Lie group with no compact factors.

Proof. Zariski connectedness follows from the fact that SL^ (R) is connected in the

Euclidean topology. The lack of compact factors follows from the much stronger
classical fact that the only proper non-trivial normal (abstract) subgroup of SL^ (R)
is its center (in particular, this also shows semisimplicity). Thus Borel's density
theorem may be applied.

From now on, we identify SO((7)(R) with SO(p,q)(R), as can be done via a

linear change of coordinates.

Lemma B.4. For p,q > 1 with p + q > 3, the group SO(p,q)(R) is a Zariski-
connected semisimple Lie group with no compact factors. Moreover, the Zariski
closure of SO(Q)(Z) is SO(<2)(R) SO(p,q)(R).

Proof. Let G SO(p,q)(R) and let G° denote the connected (in the Euclidean

topology) component of SO(p. q). It follows from Problems 9 and 10 of Section 3 in

Chapter 1 of [17] that [G : G°] 2 and that G° is not Zariski closed. This implies
that G is the Zariski closure of G° and thus is Zariski connected. For (p, q) ^ (2.2)
it is well known (see for instance Appendix A in [15]] that G° is simple as a Lie

group and hence has no compact Lie group factors, while for (p,q) (2,2) we
have that G is a finite index quotient of SL2(R) x SL2(R) (see Appendix B in [18])
and thus is semisimple with no compact Lie group factors. In either case, we have

that G° is contained in the kernel of all compact (algebraic) factors of G. Hence,
since SO"(p. g)(R) is not Zariski closed, there are no non-trivial compact (algebraic)
factors. Moreover, we may apply Borel's density theorem to obtain that all lattices
(and hence SO(2)(Z)) are Zariski dense in SO(Q)(R) s G.

B.2. Irreducibility. It now remains to check the strong irreducibility of the

subgroups in our examples. Our first lemma shows that in fact it is enough to check the

irreducibility of its Zariski closure.
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Lemma B.5 (Irreducibility implies strong irreducibility). Suppose that Y < GLjv(Z)
Z

is a subgroup such that its Zariski closure G T < GLn (R) is Zariski connected
and irreducible. Then T is a strongly irreducible subgroup of GLn (R).

Proof. Let V < RN be a non-trivial subspace invariant under a finite index subgroup
z

To < F. Then To also preserves V and is a finite index Zariski closed subgroup
z

of G, hence G To by Zariski connectedness of G. So G preserves V and so

V RN, as required.

Lemma B.6. The adjoint action (i.e. action by conjugation) ofSL^ (R) on sld (R) is
irreducible.

Proof. Let W < s[d W by a subspace that is invariant under the adjoint action. By
differentiating, we see that [sid (R), W] — W, i.e. W is an ideal. But it is well known
that s Irf(R) is simple.

For a representation G r\ V and v e V, we let R[G]u denote the smallest

G-invariant subspace containing v.

Lemma B.7. The action of SLd (M) on Sym^ given by g.A gAg' is irreducible.

Proof. Since each non-zero element of Sym^ is in the G-orbit of some diagonal
matrix, it is enough to show that R[G]/1 Symrf for each non-zero diagonal
matrix A. All positive diagonal matrices (i.e. diagonal matrices with positive diagonal
entires) are in the G-orbit of some positive constant multiple of the identity matrix,
but the positive diagonal matrices span the space of all diagonal matrices. Thus it
remains to show that if we fix a non-zero diagonal matrix A diag(ai.a2> • • •

then the space R[G] A contains a positive diagonal matrix. Note that the G-orbit of A

contains

diag(A-a1.^_1/(£/-1)a2 K~ll(d-l)ad) for all K > 0

and also

diag(aCT(i),...,tfCT(„)) for all a Sn,

which can be seen from the identity

(0 l\(dl 0\/0 -1\ (d2 0\
\-i o){o d2J{ i o J v o dj-

Assuming (without loss of generality) that a\ > 0, we see (by taking K large

enough) that the G-orbit of A contains an element of the form B\ diag(Z?i bn)
where b\ > d and \bk\ < 1 for k 2...., d. The G-orbit of A also contains Br

(ba(i),..., ba(n)) where o is the transposition (lr). Thus B\ + • • • + Bd e R[G]T
is a diagonal matrix with positive diagonal entries.
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Lemma B.8. For p.q > 1 with p + q > 3, the action of SO(p,q) on R^"1"9 is

irreducible.

This will be deduced from the following general observation.

Lemma B.9. Let V and W be vector spaces with dim W > 1 and let H < GL(V),
K < GL(W) be subgroups acting irreducibly on V and W respectively. Now

suppose that H x K < G < GL(V © W) is a subgroup such that V x {0} and {0} x W

are not G-invariant. Then G acts irreducibly on V © W.

Proof. Choose xq (vo,wo) V © W \{(0.0)} and let R[G]x0 denote the smallest
G-invariant subspace containing xo- There exists x\ (vi.tci) e R[G]xo such that

Wi 7^ 0 (by non-invariance of Fx{0}). Now since dim IT > 1 and Ai acts irreducibly,
there exists k\ K such that ki.W\ ^w\. Hence

*2 '= — (l,&i).xi (0. W2) R[G]xo

with W2 vo 1 —k\.w\ ^ 0. Since the action of K is irreducible, we have {0} x W <
R[G]xo. But since {0} x W is not G-invariant, there exists (1)3, W3) e M[G]xo such

that V3 7^ 0. But (V3,0) (i>3, W3) — (0, W3) e M[G]xo- So by irreducibility of H
we have that V x {0} C R[G]xo-

The lemma applies (assuming q > 2) with V — Mp, W R9, H SO(p),
K SO{q) and G SO(p.q). The non-invariance of V and W follow from
considering a natural embedding 50(1,1) SO(p.q) and using the fact that

50(1. 1 acts irreducibly on R2 (this can be seen by considering hyperbolic rotations).
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