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Twisted patterns in large subsets of Z

Michael Bjorklund and Kamil Bulinski

Abstract. Let E C ZV be a set of positive upper Banach density, and let ' < GLx (Z) be a
“sufficiently large” subgroup. We show in this paper that for each positive integer m there exists
a positive integer k with the following property: For every {ai,...,am} C k - ZN | there are
Y1,...,¥Ym € I'and b € E such that

vi-aj € E—b, foralli=1,...,m.

We use this “twisted” multiple recurrence result to study images of E — b under various
T-invariant maps. For instance, if N > 3 and Q is an integer quadratic form on Z*V of signature
(p.q) with p,g > 1 and p + g > 3, then our twisted multiple recurrence theorem applied to
the group I' = SO(Q)(Z) shows that

k>Q(F) C Q(E —b),

for every F C k - Z™ with m elements. In the case when E is an aperiodic Bohr, set,
we can choose b to be zero and k = 1, and thus Q(Z") c Q(E). Our result is derived
from a non-conventional ergodic theorem which should be of independent interest. Important
ingredients in our proofs are the recent breakthroughs by Benoist—Quint and Bourgain—-Furman—
Lindenstrauss—Mozes on equidistribution of random walks on automorphism groups of tori.

Mathematics Subject Classification (2010). 37A45; 11P99, 37A30.
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1. Introduction

We begin by recalling the following classical result of Furstenberg and Katznelson [10].
The upper Banach density of a subset E C Z" will be defined in Appendix A.

Theorem 1.1. Suppose that E C ZV has positive upper Banach density. Then, for
every finite set F C Z", there exists a positive integer k such that

kF C E—b, forsomebe€E. (1.1)

The case N = 1 corresponds to Szemerédi’s celebrated theorem on arithmetic prog-
ressions.
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This is an archetypal result in Arithmetic Ramsey theory. We stress the order of
the quantifiers; the integer k heavily depends on the finite set F. In this paper we
shall prove a “twisted” analogue of Furstenberg—Katznelson’s Theorem, for which
the dependence between the integer k and the set F disappears. To motivate this line
of study, we begin by giving three applications.

1.1. Quadratic forms. A very influential result in Geometric Ramsey theory by
Furstenberg, Katznelson and Weiss [11] asserts that if £ C R is a Borel set with
positive density in the sense that

0,

_ Leb(E N B(R))
lim sup 7 -
R—>x R

where Leb denotes the Lebesgue measure on R¥ and B(R) denotes the Euclidean
ball of radius R around the origin, then there exists K, > 0 such that

D(E) = {|lx - y|I”> : x,y € E} > [Ro,00),

where || - || denotes the Euclidean norm on R¥ . In other words, all sufficiently large
Euclidean distances are realized within the set E£. Recently, Magyar [13] established
the following discrete analogue of this phenomenon.

Theorem 1.2 ([13, Theorem 1]). Fix an integer N > 5 and let
O(xy,....xN) = xf +---+x12V.

Then, for every subset E C 7.V of positive upper Banach density, there exist positive
integers R, and k such that

k*Z N [R,,00) C Q(E — E).

Our first application consists of an analogue of Magyar’s result for indefinite
quadratic forms. Contrary to Magyar’s result, we focus here not on the values of O
restricted to a difference set of a set E C ZN of positive upper Banach density,
but rather we study the values of Q restricted to some translate of the set £. We
stress that our techniques do not apply to the quadratic forms in Magyar’s Theorem
as the (real points) of the symmetry group SO(N) is compact. For the notion of an
(aperiodic) Bohr set we refer the reader to Section 3.

Theorem 1.3. Let p.q > 1 and p + q > 3 and E C Z?%9 a set of positive upper
Banach density. Let Q be a quadratic form on RP*9 of signature (p, q) with integer
coefficients. Let m be a positive integer. Then there exists a positive integer k with
the property that for every finite subset F C 7?19 with |F| = m, we have

k? Q(F) C Q(E —b), forsomeb € E.

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an
aperiodic Bohr,-set, then Q(E) = Q(ZPT19).
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1.2. Characteristic polynomials and their Galois groups. Our second example
concerns characteristic polynomials of integer square matrices with zero trace. Let
Maty(Z) denote the additive group of integer matrices, and define the subgroup
Ag < Mat;(Z) by

Ag = {a € Maty(Z) : tr(a) = 0}.

Given a matrix a € Ay, we write €(a) = det(t/ — a) € Z[t] to denote
its characteristic polynomial. We note that the map € : A; — Z[t] satisfies
€(yay™') = €(a) foralla € Ay and y € GL4(Z).

The following theorem is an extension of a very recent result by the first author
and A. Fish in the paper [4], to which the current paper owes the initial ideas.

Theorem 1.4. Letd > 2 and E C Ay a set of positive upper Banach density. Let m
be a positive integer. Then there exists a positive integer k with the property that for
every finite subset F C A g with |F| = m, we have

€(kF) C €(E —b), forsomeb € E.

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an
aperiodic Bohr,-set, then €(E) = €(Ag).
Remark 1.5. During the finalization of this paper, the authors were informed by
A. Fish that he had independently proved the last assertion in Theorem 1.4 (concerning
aperiodic Bohr, sets); see [7].

Given a € Ay, we denote by QQ, the field generated by the eigenvalues of a, or
equivalently, the splitting field of the polynomial € (a). We note that

Qia=Q, and Q,,,-1 =Q,, forallk € Q*andy € GLy(Z).
yay

Given P € Z][t], we let §(P) denote the Galois group (over Q) of the splitting
field of P. Thus §(€(a)) is the Galois group of the field extension Q,/Q. Since
each €(a) is a monic polynomial of degree d, we see that each §(€(a)) is a
subgroup of the symmetric group S;. Let §; denote the set of all possible subgroups
9(€(a)) < S4 as a ranges over A ;. From the relations above, we see that

§(€(ka)) = §(€(a)) and $(€(yay™)) = F(€(a)).
forall k € N* and y € GL;(Z).

Let F C Z" be a finite set such that §(F) = §,;. Upon applying the map &
to the sets €(kF) and €(E — b) in Theorem 1.4, we have established the following
corollary. We stress that this result also follows from Furstenberg—Katznelson’s
Theorem mentioned in the beginning of the introduction.

Corollary 1.6. Letd > 2 and suppose that E C A4 is a set of positive upper Banach
density. Then there exists b € E suchthat§; C §(€(E —Db)), i.e. all possible Galois
groups can be found in some translate of E.
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This result should be compared with Gallagher’s Theorem [12] which asserts that
“most” irreducible monic polynomials with integer coefficients have Galois group Sy .

1.3. Determinants of symmetric matrices. Our final example involves determi-
nants of symmetric integer matrices. We let Sym,; = {a € Maty(Z) | a = a'}
denote the set of all symmetric d x d integer matrices.

Theorem 1.7. Let d > 2 and E C Symy a set of positive upper Banach density.
Let m be a positive integer. Then there exists a positive integer k with the property
that for every finite subset ' C Symy, with |F| = m, we have

k4 det(F) C det(E — b), forsomeb € E.

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an
aperiodic Bohr,-set, then det(E) = Z.

In particular, let £, C Z be an aperiodic Bohr,-set, and define
E={(33): x,y.z € E;} C Sym,.

Then E is a Bohr,-set in Sym, 2 Z?> to which Theorem 1.7 can applied to yield the
following corollary.

Corollary 1.8. Suppose that E, C Z is an aperiodic Bohr,-set. Then,

{xy—z*:x,y,z€ Eo} =Z.

1.4. Invariant patterns in sets of positive upper Banach density. We now turn to
generalizing the three examples above. The main idea is that the functions presented
in those examples (the quadratic forms, the characteristic polynomial map and the
determinant map) are all invariant under certain linear actions. More specifically,
the quadratic form Q in Theorem 1.3 is preserved by SO(Q)(Z); the characteristic
polynomial map € and the Galois group map ¥ on A, are both preserved by the
conjugation action of SL;(Z) on A 4; while the determinant map is preserved by the
action of SLy(Z) on Sym, given by y -a = yay’. One of the main goals of this
paper is to establish the following general result, to which the examples above apply
(this will be verified in Appendix B).

Definition 1.9. A subgroup I' < GLy(R) is said to be strongly irreducible if for
every finite index subgroup I < T, the standard representation of I” on R¥ is
irreducible. We say that a Zariski connected real algebraic group G has no compact
factors if every Zariski-continuous group homomorphism p : G — GL,(R) with
bounded image is trivial (cf. Section 2 in [2]). To avoid confusion when necessary
(in Appendix B), the usual Lie group theoretic compact factors will be referred to as
the compact Lie group factors.
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Theorem 1.10. Ler I' < GLnN(Z) be a non-trivial finitely generated strongly
irreducible subgroup whose Zariski closure in GLy(R) is a Zariski connected
semisimple group with no compact factors. Let Y be a set and suppose that
U : ZN — Y is a T-invariant function. For every E C ZN of positive upper
Banach density and m > 1, there exists a positive integer k with the property that
whenever F C ZN is a finite set of cardinality m, then

W(kF) C W(E —b), forsomeb € E.

Moreover, if E C ZN is an aperiodic Bohr-set, then k can be chosen to be 1. In
particular, if E is an aperiodic Bohr,-set, then W(E) = W(ZV).

The following result is an immediate consequence of Theorem 1.10, and
generalizes the main result in [4].

Corollary 1.11. Let T and WV be as in Theorem 1.10 and suppose that E C ZV has
positive upper Banach density. Then there exists a positive integer k such that

Wk ZN) Cc W(E — E).

1.5. Twisted multiple recurrence. Theorem 1.10is derived from a “twisted” multi-
ple recurrence result for ergodic Z ¥ -actions which we shall now state. Let (X, v) be
a Borel probability measure space, i.e. X is a Borel subset of a compact and second
countable space X, and v is a probability measure on the restriction of the Borel
o-algebra on X to X. Suppose that Z" acts on X by Borel measurable bijections,
which preserve v. In this case we refer to (X, v) as a ZV -space. We say that (X, v)
is ergodic if whenever B C X is a Borel set which is invariant under Z", then B is
either a v-null set or a v-conull set.

We note that one can always associate to any Z% -space a unitary representa-
tion wy of Z¥ on the Hilbert space L?(X, v) via

(mx(a)f)(x) = f((a)-x), foraeZ" and f € L%(X,v).

Given a character y on ZN | we write

L*(X.v)y ={f € L*(X.v) : mx(a) f = x(a) f} C L*(X,v).

We say that y is a rational character if there exists a positive integer m such that
x(ma) = 1 for all a € ZV. The set of all rational y for which L2(X,v), is
non-zero is called the rational spectrum of the Z" -space (X, v). Since the constant
function 1 is fixed by mx, we note that the rational spectrum always contains the
trivial character 1. If there are no other elements in the rational spectrum, we say
that the rational spectrum is trivial.

Theorem 1.12. Let (X, v) be an ergodic Z" -space and suppose that B is a Borel
set in X. Let I' be as in Theorem 1.10. For every ¢ > 0 and integer m > 1, there



626 M. Bjorklund and K. Bulinski CMH

exists a positive integer k with the property that whenever ay, ..., a, are elements
ink ZN, then then there are yy, ..., Vm € I such that

v( ﬁ (vjaj) - B) > v(B)" —e.

J=1

If the rational spectrum of the ZN -space (X, v) is trivial, then k can be chosen to
be 1.

In Appendix A we outline how the following result can be deduced from
Theorem 1.12. For the connection between trivial rational spectrum and aperiodic
Bohr sets we refer the reader to Section 3.

Corollary 1.13. Let E C ZV be a set of positive upper Banach density and m > 1.
Let T" be as in Theorem 1.10. For every € > 0, there exists a positive integer k
with the property that whenever a,, ..., am are elements in k ZN, then there are
Viseoos Ym € I such that

d*( ﬁ (E — yjaj)) >d*(E)" —e.
j=1

If E is an aperiodic Bohr set, then k can be chosen to be 1.

1.6. Proof of Theorem 1.10 using Corollary 1.13. LetY beasetand ¥ : ZNVN — Y
be a I"-invariant function. Let E C Z* be a set of positive upper Banach density and
¢ > 0 and let m be a positive integer. By Corollary 1.13 we can now find a positive

integer k with the property that for all a;,...,an € kZ" there are y;,...,ym € T
such that
m
d*(En () (E=vyja;)) = d*(E)y"+! —e,
=i

If ¢ < d*(E)™*!, then the left hand side is positive, and we can find b € E such
that
b+yja;j e E, foreveryj=1,...,m.

In particular, W(a;) = W(y,a;) € W(E — b) foreach j. Since ay,...,an € kZN
are arbitrary, this finishes the first part of the proof. Finally, by the second part of
Corollary 1.13, if E C Z¥ is an aperiodic Bohr,-set, then the integer k above can
be chosen to be 1.

1.7. A non-conventional mean ergodic theorem. The proof of Theorem 1.12 will
use as a black box some recent deep results by Benoist and Quint from the papers [1]
and [3]. The following definition will be useful.
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Definition 1.14 (BQ-pair). Let I' < GLxy(Z) be a non-trivial finitely generated
irreducible subgroup and let p be a finitely supported probability measure on I'
whose support generates I' as a semigroup. We say that (I', u) is a BQ-pair if
the Zariski closure of I is a Zariski-connected semisimple algebraic group with no
compact factors.

Let (#, ) be aunitary Z* -representation on a separable Hilbert space #. Given
a character y on ZV, we define

Hy={veH : n@v =y, foralla e Z"}.

The rational spectrum of (J, ) is defined as the set of all rational characters on Z~
for which J€, is non-zero. We say that the rational spectrum is trivial if it is either
empty or only consists of the character 1. Finally, we denote by J, the linear
span of J{,, as y ranges over the rational spectrum, and we write G for the linear
subspace of 7 (G )-invariant vectors in J¢.

Suppose that p is a probability measure on I'. We define

W)=Y ) -plyy). forj =1,

where the sum is taken over all j-tuples (y1,....,y;) suchthat y;---y; = y.

Our main technical result in this paper can now be stated as follows.

Theorem 1.15. Let (T, i) be a BQ-pair and let (¥ . ) be a unitary Z" -represent-
ation. For everya € ZN and v € ¥, the limit

Qqv := lim % > ( > (V)JT()’G)U),

j=1 yel

exists in the norm topology on J€. Furthermore, for every ¢ > 0 and v € H, there
exists a positive integer k with the property that whenever a € kZ" , then

” Qav - PratU“ < &,

where Py denotes the orthogonal projection onto H.y. If the rational spectrum
of (K, ) is trivial, then Q, coincides with the orthogonal projection onto the space
of m-invariant vectors, for alla € ZN \ {0}

1.8. Proof of Theorem 1.12 using Theorem 1.15. Let (X, v) be an ergodic Z" -
space and let (L2(X,v),mx) be the associated Z% -representation as in Subsec-
tion 1.5. Since (X,v) is ergodic, we see that all my-invariant elements are
(v-essentially) constant functions. Let f = 15 € L%(X,v) be the indicator function
of a measurable non-null set B C X, and define

1« .
(0 f)x) = . Z (Z,LL*J (y)(nx(ya)f)(x)). fora e ZV.

j=1 yel
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Let fra = P f and fix m € N and € > 0. By Theorem 1.15 and the fact that P,y
can be expressed as a conditional expectation (see §7.4 in [6]), we know that:

« There exists a positive integer k such that for all @ € kZ" \ {0}, and sufficiently
large n, we have

&
10 flloo <1 and [ QW f — frull <=

* We have
O S f;-a[ S 1 and f _ﬁ-atdv =f fdv
X X

* If the rational spectrum of (X, v) is trivial, then Q, = Py and Q, f = fX fdv
for all non-zero @ € Z". In particular, the integer k above can be chosen to be
one.

Now fixay,.... am € kZ". Hence, for some sufficiently large n, we have

[ 0w s orwaveo = [ gartav -
X X

where s denotes the number of @;’s equal to zero (note that Qo f = f). If s > 0

then, since f~° € Ha and f° = f, we have

[ rarsas= [ grerav= [ gmetiavz [ gma
X X X X

Hence in either case we have
[X 0 f(x)-+ 0 f£(x) dv(x) > /X fmdv —e

> (fo;a,du)m—sz (fxfdv)m—s.

where in the second to last step we used Holder’s inequality. Upon writing out the
definitions of the operators ¢ and using that f is non-negative, we see that not
all terms in the expansions can be less than the right hand side, and thus, for all

al,...,amekZN,Wecanﬁndyl ..... vm € I such that

fX F(=71a1) )+ f(~ymam) -x) dv(x) = ( fX fav)" e,

which gives Theorem 1.12.
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2. Proof of Theorem 1.15

Let TV denote the set of all homomorphisms from Z" into S = {z € C* : |z| = 1},
and note that GLy (Z) acts on T® by

(y*x)(@) = x(y~'a), for x € TV and y € GLy(Z).

Given y € TV and T’ < GLy(Z), we define

Iy={yel:y*'x=yx}<T.

We recall that an element y € T is called rational if there exists a positive integer m
such that y(ma) = 1 foralla € ZV.

Lemma 2.1. Suppose that ' < GLy(Z) is infinite! and strongly irreducible and
x € TN. Then the index [T : Ty] is finite if and only if y is rational.

Proof. Suppose that [I" : I',] is finite, hence I'y is non-trivial as IT" is infinite. Then
A = ker y < Z" is anon-trivial I'y-invariant subgroup, and thus V = A®R < R¥
is a non-trivial I'y-invariant linear subspace. By strong irreducibility of I, we have
¥ = R¥, and thus A must have finite index in Z~. Let m be the order of ZV /A.
Then we have " = 1, and thus y is rational.

Suppose that y is rational. Then A = ker y < Z" has finite index, and I" acts
on the finite set Im y = Z~ /A, which shows that I'y = Stabr A has finite index
inI". O

The main technical ingredient in the proof of Theorem 1.15 is the following deep
result by Benoist and Quint; see Théoreme 1.3 in [1] and Corollary 1.10b) in [3]. If I
in addition contains an element with a dominant eigenvalue of multiplicity one, then
this result was established earlier by Bourgain, Furman, Lindenstrauss and Mozes;
see Theorem B in [5].

Theorem 2.2. Let (T, 1) be a BQ-pair. For every y € TN anda € ZV \ {0}, we

have ;
lim 3™ (Y xra () =o0.

Jj=1 yel
if [T : Ty] = o0, and

li,gn% S (X xvant () = T :lrx] Y xa),

Jj=1 yel yET \I

if [T :Ty] < c0.

I'This is satisfied for I' coming from a BQ pair: If " is non-trivial and has Zariski connected Zariski
closure, then it must be infinite.
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Remark 2.3. We stress that Theorem 2.2 is not explicated in neither of the papers [1]
or [3]. Under the assumption that (I', ;) is a BQ-pair, Corollary 1.10b) in [3] asserts
that for every y € T¥, there exists a I'-invariant Borel probability measure on Vy
on T¥, supported on the closure of the I'-orbit of y, such that for every continuous
function f : TV — C, we have

%i (Z f((y*)"lx)u*j(y)) = fTN fdvy.

k=1 yell

By Théoréme 1.3 in [1], v is either the counting probability measure on a the (finite)
-orbit of y in T¥ (in which case the index [I" : I",] is finite), or it is equal to the
Haar probability measure on T®. We get Theorem 2.2 by letting f(x) = y(a) for
aeZVN.

Let (J, ) be aunitary Z" -representation on a separable Hilbert space #. Given
x € TV, we recall that we by #, denote the Hilbert sub-spaces

Hy={veH : n(aw=yxl)w, forallaeZV}.

One readily verifies that if y; and y are distinct elements in T¥, then #,, and #,,
are orthogonal subspaces in J€. Since J is separable, we conclude that there is a
possibly empty, but at most countable, set @ C T such that #y is’'a non-trivial
subspace for y € €2. The set of rational elements in {2 will be denoted by R 5, which
we shall refer to as the rational spectrum of (¥, ), and we write

Ha = P HyC X,

XERN

where the direct sum is taken in the Hilbert space sense. The following lemma
is an immediate consequence of the definitions above and the second assertion in
Theorem 2.2, so we omit the proof.

Lemma 2.4, Foreveryv € JH,, and a € ZN | we have

i =3 (St trar) = 3 (Frmg X x0)

j=1 yerll XERN Y€y \I'

where v =) vy and vy € Hy.
The full force of Theorem 2.2 is released in the proof of the following lemma.
L and a € ZN \ {0}, we have

rat

lirlin% Z (Z u*’ (y)rt(ya)v) =i i,

j=1 vyel

Lemma 2.5. Foreveryv € J
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Proof. Let v € J#L with |v|| = 1. By Bochner’s Theorem, there exists a Borel
probability measure 1 on T# such that

(m(a)v,v) = []TN x(a@)dn(y), foralla e ZV.

We observe that, by an application of von-Neumann’s mean ergodic theorem to the
unitary Z" -representation (J, 1) given by

ay(a@)v = y(@) 'n(v) fora e Z"N andv e ¥,

we have that n({y}) = 0 for every rational y € T". We note that

l . 2 1 <& . 2
|- X (Zwioimean)| = [ |53 (S aroixta)[ dno.
n - TN In «
j=1 yerl j=1 yerl
for all n. By Lemma 2.1, we have [I' : T'y] = oo for every irrational y and

[I" : T'y] < oo for every rational y. Hence, by Theorem 2.2, we conclude that the
right-hand side above converges to

Y |
i [T : Tyl

> xva)| ntn =0

Y \I'
since n({x}) = 0 for all y € Ry, which finishes the proof. O

Upon combining Lemma 2.4 and Lemma 2.5, we conclude that the limits

. 1 . %7
Qov =lim= 3" (3w () x(r))
Jj=1 14
exist for every v € # anda € ZN \ {0}, and

Qav = Z ([F :11* Z X(Va))vx,

YERN 1l yeT, \T

where Pyv = Y vy and vy € H,. In particular, if Ry is trivial, i.e. if Ry is
either empty or consists solely of the trivial character 1, then Q, coincides with the
orthogonal projection onto the closed subspace of 7 (G )-invariant elements in #.

The second assertion of Theorem 1.15 follows from the following lemma. Here,
P.,; denotes the orthogonal projection onto #,4.

Lemma 2.6. For every ¢ > 0 and v € K, there exists a positive integer k such that

|Qav — Pav| <&, foralla e kZN \ {0}.
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Proof. Since Q, = Oon J(’rjt, it suffices to prove the lemma for v € J,,. Picke > 0

and v € H#,, and choose a finite set F C Ry such that

2 2
3 llogl? < €2

XEF

Since F is a finite set, we can find at least one positive integer k such that y(ka) = 1
forall y € F and a € Z". We note that this implies that Qkavy = vy for all
a € ZV, and thus

[Qav—v] = | 3= Qavel < (X [0l <.

X¢EF X¢F

since || Qqv|| < |[v] forall v € # and Q,H C H, forall y € Ry. O

3. Bohr sets and rational spectrum

We say that E C Z~ is a Bohr set if there exist a compact and second countable
abelian group K with Haar probability measure m g, a homomorphism 7 : Z¥ — K
with dense image, and a non-empty open set U C K with mg(U) = mg(U) such
that E = t~1(U). If K is connected, we say that E is aperiodic, and if U contains
the identity element of K, we say that B is an aperiodic Bohr, set. We note that if
B C ZV is any aperiodic Bohr,-set, then one can always find another Bohr,-set C
such that C — C C B.

Example 3.1. We give here an example of an aperiodic BohrsetinZ. Let K = R/Z
and suppose that ¢ is an irrational number. Then t(a) = a -1 mod 1 is a
homomorphism from Z into K with dense image. Let U C K be an open subset,
e.g. an open interval. Then

B=1t'U)={a€Z:a-9modleU}CZ

is an aperiodic Bohr set in Z. More generally, for every integer N, we can form the
homomorphism 7y : Z¥ — KV defined by

A1 w88 ) ={T(@1)s 555 t(ay)), for(ay,....an) € ZN.
One can readily check that ty has dense image in K%, and thus
Bx--~xB=r;,l(Ux---xU)CZN

is an aperiodic Bohr,-set in ZV .
We can make (K, mg) into a Z" -space with the Z® -action defined by

a-x =x-—rt(a), forx e Kanda € ZV.
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We denote by 7 g the regular representation of Z" on L2(K,m ) and given y € TV,
we define

LZ(K,mK)X = {f € L2 (K.mg) : nx(a) f = X(a)f}.

Let K denote the dual of K. We can view n e K as an element in L?*(K.m K) with
the property that mx (a)n = n(t(a))nforalla € ZV . Note that if ny, 7> € K satisfy
N o T = nz o 7, then n; = 7, since the image of t is dense. In particular, for every
x € TH of the form y = n o t, we have

L*(K,mg)y = C - .

Since all 5 are orthogonal to each otherin L?(K, m g), and together span L2 (K, mg),
we conclude that

Lz(K, mK) = @ LZ(K., mK)not,
nek
where the direct sum is taken in the Hilbert space sense. Suppose that y = notis
rational, i.e. assume that there exists a positive integer m such that y™ = 1. Then,

x(@)™ = n(mt(a)) = n(t(ma)) =1, foralla e ZV,

and thus n(k) = 1 for all k € L, where L := t(mZ¥) < K, by continuity of 7.
One readily shows that L has finite index in K and thus is an open subgroup of XK.
In particular, if K is connected, then L = K, and n = 1, which establishes the
following lemma.

Lemma 3.2. Let K be a compact and connected abelian group and suppose that
t: ZN — K is a homomorphism with dense image. Then the associated Z." -space
(K,mg) has trivial rational spectrum.
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A. Correspondence principle

We shall now explain how one can deduce Corollary 1.13 from Theorem 1.12. The
arguments in this section are nowadays rather standard, and can be traced back to the
seminal paper [9] by Furstenberg.
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Suppose that £ C Z~. We may view E as an element in the compact and second
countable space 2Z" of all subsets of ZV equipped with the product topology, on
which Z¥ acts by homeomorphisms via

a-A=A—a, forde2Z” andaezZV.

Let X denote the closure of ZV - E in 2Z" . Then X is again a compact and second

countable space, and
V={4eX :0e4}CX, (A.1)

is a clopen (closed and open) subset of X. Wenote that E = {a € ZV : a-E € V}.
In other words, E can be realized as the “hitting times” of the set V' of the Z" -orbit
of E in X.

More generally, let X be a compact and second space, equipped with an action
of Z" by homeomorphisms. Given a subset U C X and x € X, we define

Ur={aeZ :a-xeU} czV.

For instance, if K is a compact and connected second countable group, 7 : ZV — K
is a homomorphism with dense image and (K, m g ) denotes the associated Z" -space
defined in Section 3, then for any non-empty open subset U C K, we see that

Up=1{aezZ" :t(@e-U}=1"(-U)cz" (A.2)

is an aperiodic Bohr set. Since K is connected, the ZN -space (K, mg) has trivial
rational spectrum by Lemma 3.2.

Let F, = [-n.n]Y C Z" and define the upper Banach density of a subset
E c Z" by

E N (F
d"‘(E):sup{lirnsup| (Fy + an)

: (ap) is a sequence in ZN}.
n | Fal

In particular,

ENE
d*(E) > limsup |—F—"—r forall E c ZN.

n | Fal

Let 2z~ (X) denote the (non-empty) convex set of Z¥ -invariant Borel probability
measures on the compact and second countable space X . The following proposition
can now be deduced from Theorem 1.1 in [9].

Proposition A.1. Suppose that U C X is open and x, € X has a dense ZN -orbit

in X. Then,
() (Ue, —a)) = v( (N a-0).

aeF aceF
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or every finite set F C ZVN andv € Pz~ (X). Furthermore, ifv(U) = v(U) for all
Z
v € Pzn, then

d*(Uy,) = v(U), forsome ergodic v € Pyzn (X).

A.1. Proof of Corollary 1.13.  Suppose that (X,v) is a compact and second
countable Z~ -space, and let U C X be a non-empty open set such that v(U) = v(U)
for all v € Pz~ (X). For instance, we could choose:

« X to be the orbit closure of the set E C Z~ and U = V asin (A.1). In this case,
U is a non-empty clopen set, and there exists an ergodic v € Pz~ (X) such that

d*(E) = d*(Ug) = v(U).

« K to be a compact, connected and second countable group, v : Z¥ — K a
homomorphism with dense image and (X, v) = (K, mg) the Z" -space associated
to (K, t) as in Section 3. In this case, mg is the unique ZN -invariant Borel
probability measure on K. In particular, for any open subset such that mg (U) =
mg(U), we have d*(t7(U)) = mg(U), and E = t=!(U) is an aperiodic Bohr
set.

Let I < GLy(Z) and ay,....a, € ZN. In the first case above, Proposition A.1
guarantees that

d*(E) = v(V) and d*(ﬁ(E—yjaj))zv(ﬁ(yjaj)-V),

j=1 j=1

forall y1,....vm, and in the second case above, Proposition A.l asserts that

d*(E) = mg(U) and d*(ﬁ(r—l(U)—yjaj))me(ﬁ(yjaj)-U),

Jj=1 j=1

forall y1,...s Ym.

Let I" be as in Theorem 1.10 and suppose that (X, v) and U are as in one of the
two examples above. Let & > 0 and let m be a positive integer. By Theorem 1.12,

there exist a positive integer k with the property that whenever ay, ...,am € kZ",
then
m
u( m('}/jaj) . U) >v(U)" —¢, forsomeyy,...,ym€Tl. (A.3)
i=1

Furthermore, if (X, v) has trivial spectrum, as in the second example above (by
Lemma 3.2), then k can be chosen to be 1.
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Upon combining the bounds above, we conclude that for all ay,....a, € kZ~N,
we have

m
d*( ﬂ (E—yjaj)) >d*(E)" —e, forsomeyy,...,ym €.
j=1

In the case when (X, v) = (K, mg), the integer k can be chosen to be 1.

B. Verifying the conditions for a BQ-pair

We now verify that our examples satisfy the conditions of a BQ-pair. Note that in
each of our examples we have a polynomial group homomorphism p : G — SLy (R)
for some Zariski closed subgroup G < GL;(R), which then defines an action of G
on R¥ given by g-v = p(g)v. For example, in Theorem 1.4 we consider the adjoint
representation Ad : SL;(R)) — GL(sl;(R)), given by

Ad(g)v = gvg™! for g € SLy(R) and v € sly(R),

where sl;(R) is the real vector space of real d x d traceless matrices. In other
words, Theorem 1.4 is obtained from Theorem 1.10 by setting I' = Ad(SL4(Z))
(and identifying A; with A 2_1). The following Proposition ensures that such a
representation p preserves certain algebraic conditions in the definition of a BQ-pair.

Proposition B.1. Let p : G — SLy(R) be a polynomial homomorphism, where
G C SL;(R) is a Zariski connected semisimple Lie group with no compact algebraic
factors. Then for I' < G Zariski dense, we have that the Zariski closure of p(I') is a
Zariski connected semisimple Lie group with no compact algebraic factors.

——Z
Proof. By Zariski-continuity, p(G) < p(I") and in fact it is classical that [p(G) :
p(F)Z] is finite (see for example Corollary 4.6.5 [16]). Hence p(G) being semisimple
= i
implies that p(I") also is. Again by Zariski continuity of p, we have that p(I")

—
is Zariski connected. Finally, suppose that ¥ : p(I')  — GLp(R) is a bounded
algebraic group homomorphism (for some D), then so is k¥ o p and so x(p(G)) is the

—Z
trivial subgroup. Thus p(G) < kerx < p(I') . But since ker« is Zariski closed we

—Z
have that it is equal to p(I") ', so there are no compact factors. O

B.1. Algebro-geometric properties. We now turn to determining the Zariski clo-
sures of SLy(Z) and SO(Q)(Z) and verifying the required algebro-geometric
properties (In this appendix, @ will always denote a quadratic form as in
Theorem 1.3.). We first note the crucial fact that the groups SL;(Z) and SO(Q)(Z)
are, respectively, lattices in SLy(R) and SO(Q)(R) (See Theorem 5.1.11 and
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Example 5.1.12 in [15]). We also note that, as required by our main theorems, these
lattices are finitely generated (See Theorem 4.7.10 in [15] or Chapter [X in [14]). We
will demonstrate below, via Borel’s density theorem, that these lattices are Zariski
dense. We remark the technicality that we use the following formulation of Borel’s
density theorem (not explicated in [8] as it demands that G is connected), which
follows immediately from a combination of (4.5.1) in [15] and (4.5.2) in [16].

Theorem B.2 (Borel’s density theorem). Let G < SLy (R) be a Zariski connected
semisimple Lie group (in particular, it has finitely many connected components) with
no compact Lie group factors. Then any lattice in G is Zariski dense.

Lemma B.3. The group SL;(R) is the Zariski closure of SLg(Z) and is a Zariski-
connected semisimple Lie group with no compact factors.

Proof. Zariski connectedness follows from the fact that SL;(R) is connected in the
Euclidean topology. The lack of compact factors follows from the much stronger
classical fact that the only proper non-trivial normal (abstract) subgroup of SL;(R)
is its center (in particular, this also shows semisimplicity). Thus Borel’s density
theorem may be applied. O

From now on, we identify SO(Q)(R) with SO(p, g)(R), as can be done via a
linear change of coordinates.

Lemma B.4. For p,q > 1 with p + q > 3, the group SO(p,q)(R) is a Zariski-
connected semisimple Lie group with no compact factors. Moreover, the Zariski
closure of SO(Q)(Z) is SO(Q)(R) = SO(p,q)(R).

Proof. Let G = SO(p,q)(R) and let G? denote the connected (in the Euclidean
topology) component of SO(p, ¢). It follows from Problems 9 and 10 of Section 3 in
Chapter 1 of [17] that [G : G°] = 2 and that G° is not Zariski closed. This implies
that G is the Zariski closure of G and thus is Zariski connected. For (p, q) # (2,2)
it is well known (see for instance Appendix A in [15]] that G? is simple as a Lie
group and hence has no compact Lie group factors, while for (p,q) # (2,2) we
have that G is a finite index quotient of SL,(R) x SL;,(R) (see Appendix B in [18])
and thus is semisimple with no compact Lie group factors. In either case, we have
that G¢ is contained in the kernel of all compact (algebraic) factors of G. Hence,
since SO?(p, g¢)(R) is not Zariski closed, there are no non-trivial compact (algebraic)
factors. Moreover, we may apply Borel’s density theorem to obtain that all lattices
(and hence SO(Q)(Z)) are Zariski dense in SO(Q)(R) = G. O

B.2. Irreducibility. It now remains to check the strong irreducibility of the sub-
groups in our examples. Our first lemma shows that in fact it is enough to check the
irreducibility of its Zariski closure.
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Lemma B.5 (Irreducibility implies strong irreducibility). Suppose thatT" < GLy (Z)

is a subgroup such that its Zariski closure G = ™ < GLN(R) is Zariski connected
and irreducible. Then T is a strongly irreducible subgroup of GL y (R).

Proof. Let V < R¥ be anon-trivial subspace invariant under a finite index subgroup
['o < T. Then F—OZ also preserves V and is a finite index Zariski closed subgroup

of G, hience G = F_OZ by Zariski connectedness of G. So G preserves V' and so
V = R¥, as required. O

Lemma B.6. The adjoint action (i.e. action by conjugation) of SLg (R) on sl (R) is
irreducible.

Proof. Let W < sl;(R) by a subspace that is invariant under the adjoint action. By
differentiating, we see that [slz (R), W] = W, i.e. W isan ideal. But it is well known
that sl; (R) is simple. O

For a representation G ~, V and v € V, we let R[G]v denote the smallest
G -invariant subspace containing v.

Lemma B.7. The action of SL4(R) on Symy given by g.A = gAg' is irreducible.

Proof. Since each non-zero element of Symy is in the G-orbit of some diagonal
matrix, it is enough to show that R[G]A = Sym, for each non-zero diagonal
matrix A. All positive diagonal matrices (i.e. diagonal matrices with positive diagonal
entires) are in the G-orbit of some positive constant multiple of the identity matrix,
but the positive diagonal matrices span the space of all diagonal matrices. Thus it
remains to show that if we fix a non-zero diagonal matrix A = diag(a,.as....,a4),
then the space R [G]A contains a positive diagonal matrix. Note that the G-orbit of A
contains

diag(Ka,, K~V/@ Vg, ..., K~Y@=Dg,) forall K > 0

and also
diag(as(1),-.-.0@m)) forallo € S,

which can be seen from the identity

0 1\(dy O 0 -1\ _(d2 O
-1 0)J\0 dJ\1 0] \0o d/)
Assuming (without loss of generality) that a; > 0, we see (by taking K large
enough) that the G-orbit of A contains an element of the form By = diag(by,....b,)
where by > d and |by| < 1 fork = 2,....d. The G-orbit of 4 also contains B, =

(bo(1)s - - -+ bo(ny) Where o is the transposition (1r). Thus By + -+ + Bz € R[G]A4
is a diagonal matrix with positive diagonal entries. g
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Lemma B.8. For p.q > 1 with p + q > 3, the action of SO(p,q) on RP*9 is
irreducible.

This will be deduced from the following general observation.

Lemma B.9. Ler V and W be vector spaces with dimW > 1 and let H < GL(V),
K < GL(W) be subgroups acting irreducibly on V and W respectively. Now
supposethat Hx K < G < GL(V @W) isa subgroup such that V x{0} and {0} x W
are not G-invariant. Then G acts irreducibly on V @ W.

Proof. Choose xg = (vg, wp) € V@ W\ {(0,0)}and let R[G]x( denote the smallest
G-invariant subspace containing x¢. There exists x; = (v;, w;) € R[G]x¢ such that
w; # 0 (by non-invariance of V' x{0}). Now sincedim W > 1 and K actsirreducibly,
there exists k; € K such that k;.w; # w;. Hence

X2 = X1 — (l,kl).x1 = (0, wz) € R[G]XQ

with wp = wy —kj.wy # 0. Since the action of KX is irreducible, we have {0} x W <
R[G]xo. But since {0} x W is not G-invariant, there exists (v3, w3) € R[G]xp such
that vz # 0. But (v3,0) = (v3, w3) — (0, w3) € R[G]xp. So by irreducibility of H
we have that V' x {0} C R[G]xo. O

The lemma applies (assuming ¢ > 2) with V = R?, W = R9, H = SO(p),
K = S0O(g) and G = SO(p,q). The non-invariance of ¥V and W follow from
considering a natural embedding SO(1,1) < SO(p.q) and using the fact that
SO(1.1) acts irreducibly on R? (this can be seen by considering hyperbolic rotations).
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