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Generalized ß -transformations
and the entropy of unimodal maps

Daniel J. Thompson*

Abstract. Generalized ß-transformations are the class of piecewise continuous interval maps
given by taking the ß-transformation x t->- ßx (mod 1), where ß > 1, and replacing some of
the branches with branches of constant negative slope. If the orbit of 1 is finite, then the map
is Markov, and we call ß (which must be an algebraic number) a generalized Parry number.
We show that the Galois conjugates of such ß have modulus less than 2, and the modulus is
bounded away from 2 apart from the exceptional case of conjugates lying on the real line. We

give a characterization of the closure of all these Galois conjugates, and show that this set is path
connected. Our approach is based on an analysis of Solomyak for the case of /^-transformations.
One motivation for this work is that the entropy of a post-critically finite (PCF) unimodal map
is the logarithm of a generalized Parry number. Thus, our results give a mild restriction on the

set of entropies that can be attained by PCF unimodal maps.

Mathematics Subject Classification (2010). 37E05, 37B40, 11R06, 30C15.
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1. Introduction

For a continuous post-critically finite (PCF) interval map, the exponential of the

topological entropy, denoted exp h, is a Perron number. Thurston showed that all
Perron numbers can be obtained this way [23]. However, for PCF multimodal maps
with restricted degree, the situation changes dramatically: the dynamics impose
complicated restrictions on which Perron numbers can be attained as exp h. We want
to describe these numbers by understanding the restrictions on the Galois conjugates
of exp h.

This problem was raised in Thurston's final paper [23], which includes a figure of
the set of complex numbers which are Galois conjugates of exp h for PCF unimodal

maps. We denote this set by fir- An ongoing problem raised by Thurston's final

paper is to understand the structure of fir. So far, progress has been made by

Calegari, Koch and Walker on understanding the region of fi r which lies inside the

*This work is supported by NSF grant DMS-1461163.
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unit disk [5], and Tiozzo [24] has shown that the set £2^ is path connected. There
has been no further progress on understanding the region of £2 j which lies outside
the unit disk.

In this paper, we study an analogous problem for a class of interval maps called

generalized /3-transformations, and use this to gain at least some information about
the outer boundary of fil j.

Our approach is based on the formalism of generalized /[-transformations, as

introduced by Göra [10]. The generalized ß-transformations are the class of
piecewise continuous interval maps given by replacing some of the branches of
a /[-transformation with branches of constant slope —ß. We call a generalized
/[-transformation post-critically finite (PCF) if the point 1 has a finite orbit, to unify
terminology with the case of continuous multimodal maps. We let £2 denote the set of
Galois conjugates of all ß such that there exists a PCF generalized /[-transformation.

The class of generalized /[-transformations contains all ß-transformations, and

many continuous interval maps. Of particular interest is the case where ß e (1,2),
the first branch is increasing, and the second branch is decreasing. This gives a class

of continuous unimodal maps among which the entropy of every PCF unimodal map
is represented (i.e. every PCF unimodal map is semi-conjugate to a PCF map in this
class with the same entropy). In particular, we can conclude that c fi, see §6
for more details.

We show that £2 lies inside a disk of radius 2. Since exp h and the degree
of a (continuous) generalized /3-transformation can be arbitrarily large, this result
contrasts sharply with the result that any Perron number can be achieved as the

entropy of a general PCF multimodal map.
Although it is trivial that £2t lies inside a disk of radius 2, since unimodal maps

satisfy exp h < 2, our results can be improved by excluding the exceptional case of
real-valued Galois conjugates. Experimental investigation of Beaucoup, Borwein,
Boyd and Pinner [2] suggests that a sharp bound should be less than 1.6. We show

rigorously that all non-real-valued Galois conjugates have modulus bounded away
from 2, at least establishing the principle that £2r \ M. lies in a disk of radius less

than 2.

Our techniques are inspired by an analysis of Solomyak [20]. For "PCF"
ß-transformations, i.e. those for which the point 1 has a finite orbit, in which case

we call ß a Parry number, Solomyak showed that all Galois conjugates are bounded
in modulus by the golden mean, and that this bound is sharp, improving on a bound
of 2 obtained by Parry [16], Furthermore, Solomyak established a Structure theorem
which gives a rather explicit characterization of the largest Galois conjugate in each

direction (i.e. with a prescribed argument). Our approach is based on extending these
results as far as possible to the setting of PCF generalized /[-transformations. In
particular, we have a version of the Solomyak Structure theorem for generalized
ß-transformations. This result provides an analytic tool for studying the largest
modulus of points in £2, and thus for bounding above the largest modulus of points
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in £27-. Showing that this theory applies in the context of £2r is one of the main
points of this article, as no techniques were previously available for attacking this

problem.

The main idea of the argument is to characterize those elements of £2 with \z\ > 1

as the inverse of a zero of an analytic function in the class

OO

3? {T(w) 1 + ^2ajWj : cij [-1,1]}.
7=i

This correspondence is obtained from the expression for the generalized ^-expansion
of 1, and makes the problem tractable to further analysis. We also show that if À is a

zero of a function in !E, then A-1 e £2. We use this to show that £2 is path connected.

In §2, we introduce generalized /I-transformations. In §3, we introduce
generalized Parry numbers and generalized Parry polynomials, and obtain our basic
bound on the size of f2. In §4, we establish a description of the outer boundary of S2

and establish slightly improved bounds on £2 \M. In §5, we study £2. In §6, we apply
our results to unimodal maps.

2. Generalized /?-transformations

The ß-transformations are the class of piecewise continuous interval maps x -» ßx
(mod 1), where ß > 1. The class of generalized ß-transformations, introduced by
Göra [10], are obtained from the /3-transformations by flipping some of the branches

so the slope is —ß, and extending the map to a piecewise continuous map of the closed
interval [0.1]. It is clear what it means to flip a full branch of the map. If we flip the

rightmost branch, which is the only branch that is not full, we mean that this "flipped
branch" of the map decreases from 1 to 1 — {yö}, where {ß} is the fractional part
of ß. The precise definition is given below. We record the configuration of positive
and negative slopes by a vector E of l's and — l's. The l's correspond to increasing
branches, and the —l's correspond to decreasing branches. There is a large literature

on using classes of interval maps to give expansions of real numbers [6,7,17,18,22],
Generalized ß-transformations were introduced in this context. Connections with
the theory of tilings are given in [9],

The (1, —1) case. A case of particular interest in this study is the sign configuration
E (1,-1), in which case the map is a continuous unimodal map. For ease of
exposition, we define the map rigorously in this case first. We let ß £ (1,2], and we

let/o [0, l/ß] and/i (1//3,1], so that the sets 7q, h denote the partition of [0,1]
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into the two intervals of monotonicity. In this case, the generalized ß-transformation
has the formula

[ßx if x G /o,
)2 — ßx if x e I\./(*)

For j > 1, we let

d(x,j)
jo if/^xe/o,
2 if fj~lx e Ii.

The symbols d(x, j) are the digits used in the generalized ß-expansion of x. For

j > 1, we let

e(x,j)
11 if fJ^X /„,

-1 if fj~lx e I\.
We define the "cumulative sign" by s{x, 1) 1,

s(x,j + 1) e(x, j)s(x, j) Y\e(x,l),
l=i

and we let s(j) := s(1, j). The generalized ß-expansion of x is the expression

s(x, \)d{x, 1) s(x,2)d(x,2) s(x,j)d(x,j)' —ß— + —?—+"'+—ji— + -
By [10, Corollary 2], this expression is valid for every x [0,1].

All generalized ß-transformations. Let me N and ß e (m,m + 1], For such ß,
a generalized ß-transformation has m + 1 branches. We let

E (E(0),E(l),...,E(m))e{l,-l}m+1

be the vector which describes the configuration of slopes of the map (where an entry 1

corresponds to positive slope, and an entry —1 corresponds to negative slope). We

partition I into m + 1 intervals

Io 0, h I -~ß'~ß.
Im

m
1

and we define the (ß, E)-transformation f — fß^ by the formula

[ßx — k if x e Ik and E(k) — 1,

/ —ßx + k + 1 if x e Ik and E (k) — — 1.

Note that the intervals Ij are defined to include their right end-points, and / is

defined on the whole interval [0,1], In the case that all entries of E are 1, then /
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d(x,j)

is an extension of the classical ß-transformation x -»• ßx (mod 1) to a piecewise
continuous map of the closed interval [0,1].

For j > 1, we let

if fi~1x e Ik and E{k) 1.

+ 1 if fj~ïx e Ik and EQc) — —1.

For j > 1, we let e(x, j) E(k) if f]_1x e Ik- We define the "cumulative sign"
by s(x, 1) 1,

j
s{x,j + 1) e(x,j)s(x,j) ]~[e(x,/).

z=i

Again, Göra shows that for every x e [0,1],

$(x, l)d(x, 1) s(x,2)d(x,2) s(x,j)d(x,j)* J + + -+ Jj + - <2'«

We refer to this expression as the iß, £)-expansion for x. For the iß, £)-expansion
of 1, we write d{j) d{\, j) and s(j) := s(l,j).

We sometimes write (ß, £')-expansions using sequence notation

((s(x, 1), d(x, 1)), (j(x, 2), d(x, 2)), (s(x, 3),d(x, 3)),...).
The set-up above includes the classic -expansion simply by setting all entries in E
to be 1. In this case, s(x, j) 1 for all x and j, and (2.1) reduces to the standard

/3-expansion of Rényi and Parry.

2.1. Finite versus infinite (ß, F)-expansions. It is possible in the definition of the

iß, £')-expansion that there exists n so that d(x, j) — 0 for all j > n, and thus the

(ß, i?)-expansion of x is finite. This can only happen if £(0) 1, so 0 is a fixed

point, and fnx 0. Since the set of preimages of 0 is a subset of the left end-points
of the intervals Ij, we must have fn~lx e (1/ß, 2/ß,..., [ß]/ß}.

We explain how to derive an infinite iß, £)-expansion from a finite iß, E)-
expansion. We start with the case that x 1 has a finite iß, E)-expansion. The

finite (ß, £')-expansion of 1 is thus

s(l)rf(l) s(2)di2) sin)din)
ß ß2 ßn ' 1 ' J

where din) ^ 0. Let d'(j) dij) for j {1,... ,n — 1}, and

\d(n) — 1 if sin) 1.
d\n)

^diri) + 1 if sin) —1,

noting that 0 < d'(n) < di1). This is because 1 < din), and din) < <7(1). It is

easily checked that the only way we can have <7 («) d(l) isif ß e N,and /(1) 0.

In this case, since 5(1) 1, <7'(n) <7'(1) <7(1) — 1.
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We have

_
s(l)J'(l) s{2)d\2) s(ri)d'(ri) 1

ß ß2 ß" ßn
(2.3)

and thus for any m > 0,

1 " s<J)d'(J) 1

m M / ZI t I vu M n / Mi _ I (2.4)

Note that by (2.3) and (2.4), we have

s(lK(l) s(n)d'(n) s(lK(l) s(n)d'(n) 1

ß +-"+ + ^b+i +•••+ £2«

Continuing this way, using (2.4), we obtain that for any m > 1,

7=0 k=l

and it follows that 1 sÜ)d'(j)/ß-' This expression is the infinite (ß, E)-
expansion of I. Note that if 1 has a finite (ß, E)-expansion, then the corresponding
infinite {ß, £)-expansion is periodic.

Now suppose that x has a finite (ß, £)-expansion. Then

s(x, l)d(x, 1) s(x,2)d(x,2) s(x, k)d'(x, k) 1

ß
+

ß2 +-"+ ~ßk +Jk>

where we define d'(x,k) d(x, k) — 1 if s(x, k) — 1, and d'(x,k) d(x, k) +1 if
.s(x, k) — 1. Thus, the infinite (ß. £)-expansion of x is given by the sequence vw,
where

v — ((s(x, 1 ),d(x, 1)) (s(x, k — l),d(x,k — 1)), (s(x,k),d'(x, k))),

and w is the (infinite) (ß, £")-expansion of 1.

2.2. Space of itineraries. There is another way to use / to assign a sequence to a

point: it is sometimes convenient to consider the itinerary of a point relative to the

partition {/0,..., Im}, where ß e (m, m + 1],

Let n^i{0, • • •, tn}- Given x e I, its itinerary

x —
s(x, l)<i(x, 1) s{x,2)d{x,2) s(x,k)d(x,k)
—

ß
+ J2 +•"+ ßk

It(x) (It(x, 1), It(x, 2),...)
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under / fß^E is the sequence in given by

It(x,;') i if f]~lx £ It.

Using the rules on the digits d{x,i) and the signs s(x,i), the (ß, £)-expansion
for x can be recovered from It(x) and vice versa. In particular, we can map the

(ß, £)-expansion of 1 to the itinerary of 1 by the formula

Itn \d^) if5 (7 + 1) s(J),
,J \d(J) - 1 ifs(j + 1)

We recall the criteria of Gdra for determining the validity of itineraries,
and hence (ß, £')-expansions. First we define an order <e on Sm. Given

a finite word w(l) • w(j) from the alphabet {0, we let sign£(ic) :=
E(w(l))~-E(w(j)).

We define the ordering <e by declaring w <e v if u>(l) < u(l), or if j is the

first place where w(j) ^ v(j), then

\w(j) < v(j) if sign£(w(l) • • • w(j — 1)) 1,
W <E V if <

(w(j) > v(j) if sign£(u;(l) • • • w(J - 1)) -1.

The order <e also makes sense on the set of finite sequences [7f=1 {0,..., mj for any
fixed k > 1. Proposition 5 of Gora [10] says that a sequence w e S m is the itinerary
of a point x under fßtE if and only if for all j > 0, er-7 w <e It(l). We remark that

by taking the closure of the space of all such itineraries in £m, this criteria can be

thought of as determining the symbolic dynamics associated to fß,E-
The order <e is an essential ingredient in the theory of one-dimensional maps,

and has its roots in the work of Parry [17]. This is a special case of the characterization
of symbolic dynamics of piecewise monotonie maps that is formulated more generally
in e.g. [8]. Similar ideas appear in the celebrated work of Milnor and Thurston [14] for
continuous multimodal maps, where they assign to each point a sequence 0(x), called
the invariant coordinate of x. For points x that are not pre-images of a critical point,
the sequence 9(x) is exactly determined by the itinerary and sign data (j(x, z'))ieN
of x.

2.3. Key identities for generalized ß -transformations. First, we establish the
fundamental relationship between the coefficients d(j), s(j), and the "signed orbit" of 1

which we write Cj := s(j + 1)/7 (1). Note that Co 1.

Lemma 2.1. For j > 0, the coefficients satisfy the recursion relation

ßcj ~s(J + 1 )d{j + 1) cj+i. (2.5)
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Proof. First, we rewrite the map / as

f(x) e(x, l)(ßx — d(x, 1)),

and thus

fJ(x) e(x, j)(ßf]~l(x) - d(x, j)).
In particular, we have /' 1) e(l, — d(j)) for j > 1. Thus, for

j > 0, we have

ßfJ'0-) — d(J + 1) e(l,j + l)/7+1(l).

Multiplying by s (j + 1) yields

ßs(j + l)fJ(l)-s(j + l)d(j + 1) s(j + l)e(l.y + l)/"7+1 (1)

— SU + 2)/7+1(l),

which establishes (2.5).

Now we prove an identity which is key to our analysis, generalizing an identity
which was observed in Solomyak [20] for -transformations.

Lemma 2.2. For any z with \z\ > 1,

OO S ß\ oo

i - X! s(j)dü)z~J (1 — X
7=1

V Zy/=o
C;Z

7

w/zere c7- 5(7 + 1)/7 (1).

Proof. We assume that |z| > 1 so that the above series converge. Multiplying out
the right hand side, we obtain

1 - X«*-' 1 + (ci - ß)z~l + F (cj+i -Cjß)z~(j+r> + •••
z d 1=0

For all j > 0, we have c7-+i — Cjß — —s(j + 1)d(j + 1) by (2.5), which yields the

required inequality.

2.4. Post-critically finite generalized ß -transformations. We define a generalized
/[-transformation to be post-critically finite (PCF) if the orbit of 1 is finite,
i.e. {/7 1 I j > 0} takes finitely many values. More generally, we say a

piecewise monotonie map (not necessarily continuous) is post-critically finite if
all maxima, minima and discontinuity points have a finite orbit. For a generalized
ß-transformation, all discontinuity points are pre-images of the points 1 or 0, and 0 is
either a fixed point or satisfies /(0) 1, so these definitions agree. We choose this
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terminology in order to be consistent with the literature on continuous multimodal

maps, where PCF is the standard term for a map whose topological critical points
have a finite orbit.

By the general theory of piecewise monotonie maps [1,14], if the map is PCF,
then it admits a Markov partition. That is, there is a partition P of the interval into
subintervals such that for all P e SP, f{P) is the closure of a union of elements

of P. The partition P is obtained by taking subintervals whose endpoints are the

forward orbits of the critical points. Thus, PCF interval maps are the ones that can
be modeled by a shift of finite type, and thus have a well understood orbit structure.
This motivates why we investigate which interval maps are PCF.

3. Generalized Parry numbers and Parry polynomials

We review the definition of a Parry number, and a Parry polynomial from
the /[-transformation literature, and extend these concepts to generalized ß-
transformations. Parry numbers and the Parry polynomial were both introduced
in his seminal paper on /[-expansions [16].

3.1. Parry numbers and Parry polynomials. A number ß > 1 is a Parry number

if the ß -expansion of 1 is pre-periodic. This occurs if and only if 1 has a finite orbit
under fß. We say that a Parry number is a simple Parry number if the /[-expansion
of 1 is periodic.

For a Parry number, the Parry polynomial Pß (z) is a monic polynomial with
integer coefficients which is naturally associated to the infinite /[-expansion of 1. We

obtain Pß by taking the infinite /[-expansion of 1

and using the geometric series formula on the right hand side. We multiply through
so all ß have a non-negative exponent, and bring all terms to one side. The resulting
expression is the formula Pß(ß) 0. For a simple Parry number with infinite
/[-expansion of 1 given by (<7(1),... ,d(p))°°, we arrive at the expression

CO

P

Pß{z) zp - J] d(J)zP J - 1

7=1

zp — d(l)zp 1
— d(2)zp 2 d(p — l)z — 1 — d(p).

Since Pß(ß) 0, all Galois conjugates of ß must also satisfy Pß(z) — 0. The

polynomial Pß is not necessarily irreducible (i.e. it might have higher degree than the

minimal polynomial for ß), so Pß may have zeros which are not Galois conjugates
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of ß. Such a zero is called a ß-conjugate. The distribution of ^-conjugates was
studied in [25,26],

3.2. Generalized Parry numbers and Parry polynomials. We define a number
ß > 1 to be a generalized Parry number if we can find E so that the orbit of 1

under the (ß, ^-transformation is finite. Thus, in the terminology of §2.4, ß is a

generalized Parry number iff there exists E so that the (ß, ^-transformation is PCF.

Let / fß,E be a PCF generalized ß-transformation. Since the orbit of 1 is

periodic or pre-periodic, then so is the sequence given by the infinite (ß. £")-expansion
of 1.

Definition 3.1. For a post-critically finite (ß, /^-transformation, let us write the

infinite (ß, i?)-expansion of 1 as vw°°, where

u - ((5(1), rf(l)), (s(2),d(2)),(s(k),d(k))),
w — ((s(k + 1 ),d(k + 1 (s(k + p),d(k + p))).

In the above, w is written with the lowest possible period, and in the periodic case
k 0, v is the empty word. We define the generalized Parry polynomial to be

k+p k

Pß>E(z) zk+p - £ s(j)d(j)zk+p~j —zk + J2^j)dU)zk-j.
7=1 7=1

The formula simplifies if the (ß, £')-expansion of 1 is periodic, in which case

p

Pß,E(z) zp -J2sU)d(j)zp-J ~ 1.

7=1

The expression Pß^iß) 0 can be derived from applying the geometric series

formula to the (ß, £')-expansion of 1, which motivates the definition of Pß,E- The

following lemma is based on this relationship.

Lemma 3.2. A number z with \z\ > 1 is a zero of Pß.E (z) ifand only if
OO

1 - X! s(J)d(j)z~J °- (3-1)
7=1

Proof. We first assume that the infinite (ß, £)-expansion of 1 is periodic. Suppose z
with \z\ > 1 satisfies Pß,E(.z) — 0- Then

1 ~z~p Y^sÜ)dÜ)z~J,
7=1
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and thus
a

1 -

- z~p

where a YlPj=i sU)d(j)z~J. Using the geometric series formula yields

oo oo p oo

1 X az~pm X X*c/M0>— X'C/w)*-'.
m=0 m=0 7 1 7 1

The general case follows the same strategy. Suppose now that the infinite (ß, E)-
expansion of 1 is pre-periodic, andz with |z| > 1 satisfies Pß,E(z) 0- Then

k k k+p
zk+p -J2s(j)dU)zk+p-J -zk + X5(J)dU)zk~j X sü)d(j)zk+p~j

7 1 7 1 j=k+l

Let oil E;=i s(j)d(j')z~j and a2 sU)d{j)z~j. Then we have

(zk+p -zk)(l -ai) a2zk+p,

and thus
1

0(2
1 — cti

1 -z-P
Using the geometric series formula yields

oo k oo k+p
1 «! + X azz~pm X^'WK"'" + X X s(j)dU)z-pm~J,

m=0 7 1 m=0 j=k+l

and the right hand side is X^i sU)dU)z~j, showing (3.1). The argument can be

reversed to show the opposite implication.

Setting z ß, the expression for the (ß, is)-expansion of 1 shows that Pß,E(ß) — 0,

and it follows that all Galois conjugates of ß with |z| > 1 satisfy (3.1).

Remark 3.3. We do not know whether Pß,E is irreducible, so there may be z which
satisfy PJsj£-(z) 0 but are not Galois conjugates of ß. We call such z the generalized
ß-conjugates, following terminology of Verger-Gaugry in the ß-transformation
case [25,26]. The generalized ß-conjugates also satisfy the equation (3.1). It would be

interesting to extend the results of [25,26] to study the distribution of the generalized
/[-conjugates.

Remark 3.4. If the (ß, E)-expansion of 1 is finite, the polynomial PßtE can be

obtained equivalently by looking directly at this finite (ß, £)-expansion; that is, the

expression
j(l)rf(l) s(2)d(2) s(n)d(n)1—— + —+ •"+—
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In this case,

n n

Pß,E z" -J2s(j">d(j)z"~j Zn — ^2sU)d'(j)zn~J - 1.

7=1 7=1

Remark 3.5. Liao and Steiner studied the class of negative ß-transformations in [12].
This is the subclass of generalized ß -transformations where the sign of all the branches

is set to —1. They call a number ß for which the negative /3-expansion of 1 is pre-
periodic a Yrrap number, and give examples. It is immediate that every Yrrap number
is a generalized Parry number.

3.3. Upper bounds on conjugates for PCF (ß, E)-transformations. Combining
Lemmas 2.2 and 3.2, we see that any Galois conjugate of a generalized Parry number ß

with \z\ > 1 satisfies

oo oo

1 + °jz'] Y! cjz~J °' {3-T>

7=1 7=0

where Cj s(j + 1) fJ(1) 6 [—1.1] and / is a PCF (ß, isj-transformation. (The
same is true for the generalized /3-conjugates with |z| > 1). Consider the class of
functions

F |T(u;) 1 + y*cijw-* : aj e [—1,1]>.
I

7 1
^

If A is a zero of a function in 5r, then z A-1 satisfies

OO

1 + Y2aJz'J °-
7 1

Thus if z is a Galois conjugate of a generalized Parry number ß with |z | > 1, then z_1

is a zero of the function in E with coefficients as in (3.2).

Lemma 3.6. Any zero A ofanyfunction in E has modulus at least Ifany of the aj
satisfy \aj\ < 1, then |A| >

Proof. Suppose T(A) 1 + aj^ 0' where aj e [—1,1], We argue by

contradiction. Suppose that |A| < Then \ajXJ \ l^ry 11AI7 < 2~J. Thus

OO OO OO

\J2aJXJ\ < y WjV\ <J22"J l'
7 1 7 1 7 1

which contradicts the fact that if A is a zero of T, then | aj^J\ L If
we assume further that at least one of the aj satisfy \aj | < 1, then for every A with
|A| < \ we have | aj^J I < L so the same contradiction argument applies.
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Clearly, this bound is sharp by setting all the aj — 1 and letting A j.
Theorem 3.7. Ifß is a generalized Parry number, then all Galois conjugates z of ß

satisfy \z\ <2.

Proof. By Lemmas 2.2 and 3.2, if z is a Galois conjugate of ß with \z\ > 1, then z-1
is a zero of a function in F whose coefficients are given by a y s(j + 1) fJ(1)

for the appropriate (ß. .^-transformation /. Thus we can apply Lemma 3.6 to show

that \z\ <2. The inequality is strict because the only way we can have \aj | 1 for
all j is if 1 is a fixed point of /. This can only happen if ß is an integer, and thus
does not have Galois conjugates.

Remark 3.8. For ß-transformations, Solomyak showed [20] that if z is a Galois

conjugate of ß with |z| > 1, then z-1 is a zero of a function in ^[0,1], where

^[0,1] jrO) 1 + ^2aJwJ ai e [0.1]j-
1 j=1 >

He used this characterization to show that |z| < (%/5 + 1)/2 by exploiting the fact
that I aj — 11 < |.

4. Conjugates with a prescribed argument and Solomyak's structure theorem

We investigate the maximum possible modulus of a conjugate with a prescribed

argument. Let

X# min {|A| : A is a zero of a function in 3< and the argument of A is </>}.

A description of the function in 3< that attains A $ is the content of the Solomyak
Structure theorem. Such a function is called <p-optimal. This result was originally
established by Solomyak [20] to analyze the zeroes of functions in ^[0,1]. The
Structure theorem was generalized by Beaucoup, Borwein, Boyd and Pinner [2] to
a class of power series with restricted coefficients that includes IF. The following
statement is given in [2].

Theorem 4.1 (Solomyak Structure theorem for F). Given an argument cp e (0, n),
there exists a — £ (0, Jt) and a function

OO

T^fw) 1 + ^ anwn
n= 1

whose coefficients satisfy

!1
ifncp — a e (0, n) (mod 2jt),

—1 ifncp — a e (—zr, 0) (mod 27r),

such that T,), is cp-optimal; i.e. T(/>(A^e"^) 0.
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The sequence of coefficients {an} is determined by the rotation sequence of
slope (p and base point a with the possible exception of one coefficient a.j, which we
call the anomalous coefficient. In the case of ^[0,1], where ^-optimal functions have

non-anomalous coefficients belonging to {0,1}, Solomyak gives explicit examples
of </>-optimal functions for which the anomalous coefficient is different from all the

rest. The function is unique when cp/2n is irrational, and it is conjectured that
when (p/2n is rational, 0-optimal functions are never unique, see [20],

No convenient characterizations of the anomalous coefficient or the function
cp —> are currently available. Despite these drawbacks, Solomyak put his
structure theorem to impressive use in [20], obtaining results on the continuity and

differentiability of the function cp -> A^. In particular, we have the following result
whose proof was given in the ^[0,1] case in [20, Lemma 4.2], and was observed to
extend almost verbatim to F in [2, Proposition 1],

Theorem 4.2 ([2,20]). The function (p Xq is continuous on (0, n).
We apply this result in the following theorem.

Theorem 4.3. The quantity X^ is bounded uniformly away from A for (p e (0, n).
Thus, supjA^1 : <p (0, n)} < 2.

Proof First, we show that A^ > \ on (0,7r). Suppose not. Then there exists
9 e (0,7r), and A \eie, and an e [—1,1] so that

1 + J]a„A" 0.

Furthermore, by Lemma 3.6, an 6 {1,-1} for all n. In particular, writing

anA" — eid",
2n

we have
OO

1 + y —eie" 0.

n=l
Thus

1
00 1

1 + -Y —ei9n-
2 2n

n=2

Letting z\ — 1 + Xe'8i. we see that \z\ — 11 A. Let z2 — Y^=2 ynelQ" Then

\z21 < 2 T" Thus, if z 1 z2, then z\ A and so 9\ — n. Thus we have

a\X —A. Since a\ 6 {1, —1}, it follows that A A or A —This contradicts

the hypothesis that A Aei6 for 9 G (0, n).
Since the map </>—>• A^ is continuous on (0, Jt), all that remains is to analyze

the limit of A^ as <p 0 and <p -» n. The argument of [20, Lemma 4.1] shows
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that lim^o ^<t> converges to a value which is a double root of some function in 3r,
and likewise for lim^u- A^. Solomyak gives a rigorous argument that the smallest
double root of a function in 3? is greater than 0.6299 [21, p. 622], Thus

Remark 4.4. Note that A0 Xn This is because A - is a zero of the

function in !F with an —1 for all n, and A —j is a zero of the function in F
with a„ — (—1)"+1 for all n. Thus the function <j> A^ is discontinuous at 0 and n.

Remark 4.5. The function (p -» A^ is investigated numerically in [2], and is plotted as

Figure 2 of [2], The numerics suggest that A^ G (0.63, 0.71) for <p £ (0, n), and that

lim^-^ A^ ?» 0.6491. Thus, we should expect that sup{A^: | 4> £ (0, tt)} < 1.59.

It is an open question to rigorously establish optimal bounds on this quantity.

Remark 4.6. Solomyak studied differentiability properties of the boundary of 5q0,i]
in some detail using the tools introduced above, giving criterion for when 0 X,p

is smooth, and non-smooth. The extension of these results to !F is claimed in
[2, Proposition 1], with proof referred to Solomyak.

5. The set

Recall that £2 is defined to be the set of all Galois conjugates for all generalized Parry
numbers. Let denote the set of zeroes of functions in !F. We have shown that

{z e £2 I |z| > 1} C {z I z-1 G ^}. In this section, our main result is a partial
converse of this: we will show that {z | z~l G ~§} C {z G £2 | |z| > 1}. To prove
this, first we require a means of identifying when a number is a generalized Parry
number.

5.1. Criteria for ß to be a generalized Parry number. Suppose that

is a finite sequence where n > 2, the a(j) are non-negative integers with a(n) ^ 0,

the s(j) G {1,-1}, and 5(1) 1. Let the finite sequence (It(l),..., It(n)) be given
by

min I lim } j. lim y j.X > 0 69QQ —

It follows that supjA^1 : (p G (0, tt)} < 2.

((j(l),a(l)),...,(s(n),fl(n)))

It(7)
fl(y') if s(j + 1) s(j),
a(y')-1 iis(j + \) -s(j).

for j G {1,..., n — 1}, and It(«) a(n).
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We impose the following hypotheses on the sequence:

(1) It(l) > a(j) for all; > 2;

(2) there exists a sign configuration E e {l,—l}m+1, where m It(l), such that

s(j + 1) s(j)E(ft(j)) for each ; {1,1};
(3) if a{j) 0, then s(j + 1) s(J), to ensure that It(;) > 0. Thus, if any of the

a(j) are 0, then E(0) 1.

Writing w (It(l),.... It(n)), we will find a ß such that the itinerary of 1 for fß^
is either w°° or w0°°.

A complete characterization of which sequences arise as the itinerary of 1 for
some (ß, ^-transformation is currently open. A statement for It(l) > 2 appears as

Theorem 25 of Gora [10], although his hypotheses have been criticized by Steiner

in [22], We do not pursue the general case here since we are investigating only PCF
transformations.

We define the function

», ^ ^ J(2)fl(2) s(3)a(3) s(n)a(n)
F(x) s(l)a(l) + + 2— + • • • + ——t—•X xz xn 1

We want to show that F has a fixed point in the interval (It(l),It(l) + 1). To this
end, for ; {1— 1}, let

Rj(x) j2s{i + l)fi + l)-
i=j

Lemma 5.1. For x e [It(l),It(l) + 1], and. j e {1,... ,n — 1}, we have

(1) \Rj(X)\<-J=T;
(2) sign(i?;(X)) s(j + 1).

Proof. Let N max{a(2),... ,a(n)}. Then, since N < It(l) — 1 < x — 1,

ID / M
N 1 N 1

Iä7WI<Et7 — <
X' XJ 1 X — 1 xj 1

i=j
Now take the first k > 1 so that a(j + k) 0. If k > 2, then since

a(j + 1) ••• a(j + k- 1) 0,

we have s(j + k) s(j + 1). We have

n s(j +k)a(j +k)
Rj(x) + Rj+kW>

and thus

s(j + k)a (;' + k)
_

1 s(j + k)a(j + k) 1_
xJ+k-i xi+k~l J xj+k~l xi+k~1'

Since a(j + k) > 1, it follows that sign(i?; (x)) s(j + k) s(j + 1).
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It follows immediately from (2) in Lemma 5.1 that

\Rj(x)\ s(j + l)Rj(x). (5.1)

Lemma 5.2. There exists ß e (It(l),It(l) + 1) such that

s(2)a{2)
i

s(3)a(3)
r

s(n)a(n)

J^=î(l)fl(l) + ^ + + on-1

Proof. We show that F : [It(l),It(l) + 1] -> [It(l),It(l) + 1], Note that F(x)
a( 1) + i?i(x). There are two cases. First suppose s(2) 1. Then £'(It(l)) 1 and

It(l) a( 1). Since 0 < i?i(x) < 1, we have

It(l) + 1 0(1) + 1 > a(1) + Rrfx) > a(1) It(l).

Now suppose s(2) —1. Then £ (It(l)) —1 and It(l) a{ 1) — 1. Since
0 > Ri(x) > —1, we have

It(l) + 1 a{1) > a{ 1) + Ri(x) > a( 1) - 1 It(l).

Thus, in both cases, the image of F is contained in (It(l), It(l) + 1). Considering
the map as F : [It(l), It(l) + 1] -> [It(l), It(l) + 1], it follows from the Intermediate
Value theorem that F has a fixed point ß. Clearly, ß (It(l), It(l) + 1}.

From now on, we fix jß e (It(l),It(l) + 1) provided by Lemma 5.2, and let

/ fß,E Recall that [0,1] is partitioned into intervals Iq [0,\/ß], Ii
(1/yß, 2/ 'ß]

• • • > Im (m/ß, 1], where m It(l).
Lemma 5.3. For k e {1,— 1}, we have

(i) fk~\ 1) e Iim;
(ii) fk~\1) 1 (a(k) + ßk-lE(im)\Rk(ß)\).

Proof We argue recursively. For k 1, it is immediate that 1 e /it(i), and we have

_ s(l)fl(l) s(2)a{2) s(n)a(n)
ß ß2 ßn

jr + jRm-
and since Ri(ß) s(2)17?i(yß)| £"(It(l))|i?i(>S)|, we are done.

Now we show that if/: e (1— 1}, and (i) and (ii) hold true for fk~l(l),
then

fk{\) ßk~l\Rk(ß)\. (5.2)



794 D. J. Thompson CMH

There are two cases:

Case (a). Suppose that s(k + 1) s(k). Then a(k) It(A), and E(lt(k)) 1.

Since ii(It(A)) 1, for y I\t(k), f(y) ßy — aQc), and thus applying / to
fk~1( 1) /it(fc), it follows from the expression (ii) that fk{ 1) ßk~1\Rk(ß)\.

Case (b). Suppose that s(k +1) —s(k). Then a (A) —1 It(A), and £(It(A)) —1.

Since £(It(A)) -1, for y e IIt(/c), f(y) a(k) - ßy. Since fk~l{1) e ht(k),
it follows from the expression (ii) that fk{1) —E(lt(k))ßk~1 \Rk(ß)\ —

ßk~l\Rk{ß)\-

Now fix A {I.... ,n — 2}, and suppose that (i) and (ii) hold true for fk~l (1).
It follows from (5.1) and (5.2) that

fk{1) ßk~l\Rk(.ß)\ ßk~ls{k + l)Rk(ß)

ßk-^k + l)^k + l)ßf + l)+Rk+l(ß)

-ß(a(k + 1) + ßks(k + l)7?fc+i(^))

^(a(k + 1) + ßks(k + 1 )s(k + 2)\Rk+\(ß)\).

Since s(k + l)s(k+2) — s(k + l)2is(It(A +1)), we have established the formula (ii)
for fk(1).

Now, we show that (ii) implies (i). Again, there are two cases. If s(k + 2)

s(k + 1), then a(k + 1) It(A + 1), and E(lt(k + 1)) 1, so

ï2±I) < /'(i) l(a(t +i) + < î»±A±l,
and so fk{ 1) e Iït(k+i).

In the case that s(k + 2) —s(k + 1), then a(k + 1) — 1 It(A + 1), and

E(lt(k + 1)) -1, so

< fHn _ l.(a(k + ,,-/*!*„(«!) <

and so fk( 1) e IIt(k+1).

This shows that both (i) and (ii) are true for fk( 1), which completes the proof.

Lemma 5.4. We have fn~l (1) a(n)/ß. Thus f is PCF, and so ß is a generalized
Parry number.

Proof. Since by Lemma 5.3, (i) and (ii) hold for fn~2( 1), the equation (5.2) shows

that fn~1(1) ßn~2\Rn-i(ß)\ a(n)/ß. Since f(a(n)/ß) is either 1 or 0 (noting
that a(n)/ß Ia(n)-i> so this depends only on whether E(a(n) — 1) is positive or
negative), we have shown that 1 has a finite orbit, and hence / is PCF.
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The previous results allow us to give the following simple criterion for finding
generalized Parry numbers.

Theorem 5.5. Suppose that M(I),..., M in) are distinct non-zero integers such that

M{\) > 2, \M(j)\ + 1 < M{1) for all j > 2, and\M{j)\ ± \M(k)\-\forall j,k.
Then the equation

M(2) Mi3) Min)
x M(l) + + —2_ + -,- + -^zr (5.3)

X xz xn 1

/tas a solution ß > 1 which is a generalized Parry number.

Proof. Leta(y') |M(/)| > 1 and s(y) sign(M(y and define It(y') as we did
earlier in this section. Our hypotheses imply that It(l) > a(y for all j > 2. Since

all the It(y are distinct, we have freedom to choose a vector E whose entries in the

positions is(It(y')) leads to the sequence of signs sij). Thus applying Lemma 5.2,

(5.3) has a solution ß G (It(l), It(l) + 1), and so by Lemma 5.4, fßtß is PCF, and

thus ß is a generalized Parry number.

Remark 5.6. We mention some other classes of numbers that are known to be Parry
numbers, and hence generalized Parry numbers. Schmidt proved that if ß is a Pisot

number, then ß is Parry [19]. Whether Salem numbers are Parry is a challenging

open problem [4,23], first raised by Schmidt in [19]. Boyd proved that degree 4 Salem
numbers are Parry [3], Numerical evidence and hueristic arguments by Thurston [23]
and Boyd suggest that most higher degree Salem numbers are not Parry, but it seems

to be very difficult to find even a single rigorous example of this phenomenon.

5.2. Characterization of SI. We now prove our main result about G.

Theorem 5.7. ThesetS2 iîDUjz | |z| > 1 and z~1 G ~§}, where D {z \ \z\ < 1}.

Proof. We already know that the closed unit disk Bisa subset of (2, because B is
contained in the closure of the Galois conjugates of the simple Parry numbers (see

Theorem 2.1 of [20]). Thus, all it remains to show is that if \z\ > 1 and z-1 G ~§,

then z e SI. The argument is a generalization of the second half of the proof of
[20, Theorem 2.1].

Let A z-1. Then T(\) 0 for some T(tu) 1 + «y tu7 with aj G [—1,1],

We approximate T with a function g (tu) 1 + YTf= i bjWJ with bj e (—1,1),
where all bj are rational. By taking n large, and the bj arbitrarily close to the aj,
we can ensure that g has a zero arbitrarily close to A. Writing each bj in the form

bj Mij + 1)/M(1), where M{ri) G Z, we have

g (tu) M(1)"1(M(1) + M(2) tu + ••• + Min)wn~l).

We can make sure that our bj are chosen so that all Mij) are distinct and non-zero,

Mil) > 2, \M{j)\ + 1 < Mil) for all j, and \M{j)\ \M{k)\ — 1 for all j,k.
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Now take a large prime p > M(n) (to be fixed later). We know by Theorem 5.5 that
the equation

pM(2) pM{3) pM(n)
x pM( 1) + —— + —— + ••• + p

has a solution ß > 1 which is a generalized Parry number. Define the polynomial

q(w) wn - pM{\)wn~l - pM(2)wn~2 pM(n),

so that ß is a zero of q. The polynomial q is irreducible by Eisenstein's Criterion, and

hence q is the minimal polynomial for ß. Thus all other zeroes of q are conjugates
of ß.

The rest of the argument is to show that one of these zeroes is close to z.

Elementary computation shows that q(w~l) 0 if and only if g(w) wpM^y
Thus letting h(w) — — pM\yw, we have q(w~x) 0 if and only if (g + h)(yo) 0.

We now use Rouché's theorem. We are free to choose p as large as we like, so we
can ensure that \h\ < |g| on a small circle y centered at A. Thus, g + h has the

same number of zeroes as g inside y. By the choice of g, we can ensure that g,
and hence g + h, has a zero w0 inside y. Thus, q has a zero Wq1 with Wo in a

neighbourhood of A. We can ensure that Wo, which by construction is the inverse
of a Galois conjugate of a simple generalized Parry number, is arbitrarily close to A.

This completes the proof.

5.3. Path-connectedness of Œ. Given Theorem 5.7, it is now easy to show that G

is path connected. We use the following lemma.

Lemma 5.8. Let z reid e G withr > 1. Thenfor all r' e (l,r), z' r'elS 6 G.

Proof. By Theorem 5.7, we have A z_1 e ~§, so T(X) 0 for some feE For

any a > 1, the function T(z) := T{z/a) e !F, and has aX as a zero. Thus aX e ~§,

and so e G for any a > 1.

Thus, we can connect any two points in G using, for example, paths along at most
two radial lines together with a path along the unit circle S1.

6. Unimodal maps as generalized /?-transformations

We now use the results of the previous sections to study topological entropy for
PCF continuous unimodal maps. The topological entropy of a continuous map on a

compact metric space is a number that captures the exponential growth rate of distinct
orbits of length n, and is a fundamental invariant of a topological dynamical system.
See Walters for a general definition [27]. The problem of deciding if a number can
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be obtained as the entropy of a map from a given class of systems has a long history
with notable results including [11,13,23],

For piecewise monotonie interval maps, the topological entropy has a simple
formula which was first obtained by Misiurewecz and Szlenk [1,15], and which for
current purposes we take as our definition.

Definition 6.1. Let / be a piecewise monotonie map of the unit interval. The

topological entropy, which we denote htop(f), or simply h, is defined to be

^top(/) lim — log#{branchesofmonotonicityforfn\.
n—>"00 n

Note that it is immediate from the definition that the entropy of a unimodal

map is at most log 2. One can prove that if / is a generalized /3-transformation, then

htop(f) — log ß, see e.g. Corollary 4.3.13 of [1], It is well known that every unimodal

map / is topologically semi-conjugate to a A-uniform expander g; that is, a piecewise
affine continuous interval map whose slope on each interval of monotonicity is
either A or —A. In particular, htop(f) hiop(g), and if / is PCF, then g is PCF.

This result was first proved in [14], and is given as Theorem 4.6.8 of [1]. Thus,
to study the entropies of PCF unimodal maps, it suffices to study the entropies of
PCF uniform expanders. Unimodal uniform expanders (perhaps after modifying by a

conjugacy) can be thought of as generalized /^-transformations. Thus the formalism
of generalized /3-transformations can be used to study the entropy of unimodal maps.
In particular, we have the following lemma.

Lemma 6.2. Every PCF unimodal map is conjugate to a PCF generalized
ß-transformation.

Proof. It suffices to show that every PCF A-uniform expander g is conjugate to a

PCF generalized /3-transformation. First, we use the standard trick of trimming
the domain of g, and rescaling to get a surjective map of the unit interval. Let
A 1]) [a,b\, and consider g|A- The critical point c satisfies either

g(c) a or g(c) b. We also have a, b {g(a), g{b), g{c)}. We can conjugate by
the affine transformation 7r(x) 2F7z(x ~ a)t0 the map G(x) n o g o (x)
bh^[g((b — a)x + a) — a]. Clearly an affine transformation will send critical points
to critical points, and a conjugacy sends periodic orbits to periodic orbits, so the new

map G is PCF, surjective, and has domain [0,1].
To be surjective, G must have at least one full branch. There are four possibilities:

(1) first branch full; sign configuration (1,-1);

(2) first branch full; sign configuration (—1,1);

(3) second branch full; sign configuration (—1,1);

(4) second branch full; sign configuration (1, —1).
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Cases (1) and (2) are generalized ß-transformations, with ß X, and the

appropriate sign configuration. For case (3), we conjugate by the transfomation

it{x) —x to get the transfomation h(x) —G(—x) defined on [—1,0]. We can

conjugate by a translation to return the domain to [0,1], The new map is in case (2).

Similarly, a map in case (4) is conjugate to a map in case (1). Thus, G is either a

generalized ß-transformation, or conjugate to a generalized ß-transformation by an

affine transformation.

Thus, for a PCF unimodal map /, we have htop(f log ß for some generalized
Parry number ß e [1,2]. So we have

fir '= {z I z is a conjugate of eh^ for a PCF unimodal map /} C £2.

The problem of giving a description of fir was raised in Thurston's final paper [23].
His numerical results showed that apart from a spike along the real axis, this set

appears to lie in a disk much smaller than the disk \z\ <2. Our description of fi
allows us to conclude that fir \ R indeed lies in a disk of radius strictly less than 2.

As mentioned previously, although numerical results suggest that we should expect a

bound less than 1.59, rigorous sharp bounds are currently out of reach. Nevertheless,
we establish the principle that all non-real Galois conjugates are contained inside a

disk with a smaller radius than the trivial bound 2. We now state this as a theorem.
The proof is an immediate consequence of the discussion above and Theorem 4.3.

Theorem 6.3. There exists e > 0 so that if z is a conjugate of eh(-^ for a PCF
unimodal map f and z fi R, then \z\ < 2 — e.

Many questions remain about the sets £2 and fir- For example, can one describe

fi \ fir? One way in which these sets differ is that, from Thurston's picture, fir
appears to have "holes" around some roots of unity. This is ruled out for £2 by the

star-convexity proved in Lemma 5.8. It would be interesting to determine the exact
location and distribution of the holes that appear in G j. The existence of holes
for fir inside the unit disk was established in [5]. Another question is to determine
where, and by how much, the outer boundaries of G and fir differ. Numerical
investigation of these questions could be a good first step towards rigorous results.
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