Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 10 (1955)

Heft: 2

Rubrik: Ungelöste Probleme

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

normalen Durchmessers von $\bar{\varkappa}$. s_1 sei die Richtung von H nach F_1 (in Pfeilrichtung orientiert!) und ν_1 die dazu normale Ebene durch U^s . $\bar{\varkappa}$ hat für die Sehstrahlrichtung s_1 den scheinbaren Umriss u^s in π , der wahre Umriss liegt in ν_1 . Durch A^s und B^s werden die zu s_1 parallelen Geraden gelegt und mit der in Richtung s_1 sichtbaren Hälfte von $\bar{\varkappa}$ in \bar{A} und \bar{B} geschnitten. Der durch \bar{A} und \bar{B} gelegte Grosskreis von $\bar{\varkappa}$ liefert bei Projektion in Richtung s_1 eine Ellipse in π , die durch A^s und B^s geht und u^s in diametralen Puknten berührt, wobei A^s und B^s von den Berührungspunkten nicht getrennt werden. Diese Ellipse ist nach Hilfssatz 2 eindeutig bestimmt und ist daher mit c^s identisch. c^s und der Grosskreis durch \bar{A} und \bar{B} sind durch die Sehstrahlen affin aufeinander bezogen, und da A^s und B^s Endpunkte konjugierter Durchmesser von c^s sind, sind $U^s\bar{A}$ und $U^s\bar{B}$ zwei zueinander normale Radien von $\bar{\varkappa}^1$).

Diese mit c^s durchgeführte Konstruktion lässt sich für a^s und b^s wiederholen. Man erhält so zur Sehstrahlrichtung s_1 drei Punkte \overline{A} , \overline{B} , \overline{C} auf $\overline{\varkappa}$, die mit U^s ein räumliches orthogonales Dreibein bilden. Daher ist $\overline{\varkappa}$ eine mögliche Lage der gesuchten Einheitskugel und U^s , \overline{A} , \overline{B} , \overline{C} eine mögliche Lage des gesuchten räumlichen Dreibeins UABC. Andere Lagen gehen daraus durch Parallelverschiebung in Richtung s_1 hervor. Dreht man diese Dreibeine um die Nebenachse von u^s , bis s_1 in die Richtung $s_2 \parallel [HF_2]$ gelangt, so erhält man die zur Sehstrahlrichtung s_2 gehörigen Dreibeine. Sie sind mit den früheren gleichsinnig kongruent. Als Länge der Einheitsstrecke im Raum ergibt sich beide Male die Länge der halben Nebenachse von u^s .

Ist statt U die Gegenecke von U unsichtbar (Untersicht statt Obersicht), so ergeben sich zur Sehstrahlrichtung s_1 Achsenkreuze, die zu den vorher gefundenen bezüglich v_1 spiegelbildlich liegen; analog für s_2 .

In gleicher Weise lässt sich der Satz von Pohlke in dem (praktisch uninteressanten) Sonderfall beweisen, dass zum Beispiel U^s , B^s , C^s auf einer Geraden liegen. A^s liegt dann auf u^s , \overline{A} in v_1 bzw. v_2 ; die Projektion des Grosskreises durch \overline{A} und \overline{B} berührt u^s in A^s und im diametralen Punkt und geht durch B^s , sie ist daher c^s .

FRITZ HOHENBERG, Graz.

Ungelöste Probleme

Nr. 4. Unter der Länge eines konvexen Rotationskörpers verstehen wir die Ausdehnung des Körpers in Richtung der Achse, also den Abstand der beiden auf der Achse liegenden Pole.

Herr H. Bieri (Bern) hat verschiedene Extremalprobleme gelöst, die sich auf derartige Rotationskörper mit fest vorgeschriebener Länge beziehen. Bis heute offengeblieben sind aber beispielsweise die beiden folgenden Fragen: Welcher konvexe Rotationskörper vorgeschriebener Länge hat bei gegebenem Integral der mittleren

¹⁾ Man könnte auch auf Hilfssatz 2 verzichten und so schliessen: Durch u^s geht ein Sehstrahlenzylinder ζ_u , der \varkappa längs eines Kreises k in v_1 berührt; durch c^s geht ein Sehstrahlenzylinder ζ_c , der ζ_u längs zweier Erzeugenden berührt. ζ_c berührt \varkappa in den beiden Schnittpunkten dieser Erzeugenden mit k, daher zerfällt die Schnittkurve von ζ_c mit \varkappa in zwei Kreise auf \varkappa . c sei einer dieser Kreise, A und B seien die Schnittpunkte von c mit den Sehstrahlen durch A^s und B^s . Die ebenen Schnitte c und c^s von ζ_u sind affin aufeinander bezogen, daher sind A und B Endpunkte zueinander normaler Durchmesser von c.

Aufgaben 43

Krümmung: a) kleinste Oberfläche? b) grösste Oberfläche? Wegen einer Vermutung zu a) vgl. H. Bieri: Ein(M,F)-Problem mit Nebenbedingung, Experientia 9, H. 6, 207 (Basel 1953).

H. HADWIGER, Bern.

Berichtigung. In Nr. 2 der Rubrik «Ungelöste Probleme» [El. Math. 9, Nr. 6, 134 (1954)] muss der Ausdruck für D_3 natürlich

$$D_3 = \sqrt{\frac{3+\sqrt{3}}{6}} = 0.8880\dots$$
 (Red.)

heissen.

Aufgaben

Aufgabe 200. Zeige, dass das Volumen $V_n(d)$ einer Kugel in n Dimensionen und mit einem Durchmesser d gegeben ist durch

$$V_n(d) = rac{d^n}{\Gamma^*(n+1)} \qquad ext{wo} \qquad \Gamma^*(n+1) = \prod_{k=2,\,4,\,6,\,\dots} \left\{ rac{\left(1+rac{1}{k}
ight)^n}{1+rac{n}{k}}
ight\}.$$

[Wird das Produkt für $\Gamma^*(n+1)$ über alle natürlichen k erstreckt, so ergibt sich die bekannte Eulersche Formel für die Gamma-Funktion $\Gamma(n+1)$]. B. VAN DER POL, Genf.

Lösung: Es genügt, die Behauptung für die Einheitskugel zu beweisen. Der Schnitt einer n-dimensionalen Einheitskugel mit einer Hyperebene im Abstand $\cos\alpha$ vom Mittelpunkt ist eine (n-1)-dimensionale Kugel vom Radius $\sin\alpha$. Daraus folgt die Rekursionsformel

$$V_n = \int_0^{\pi} V_{n-1} \sin^n \alpha \ d\alpha = J_n V_{n-1} \quad \text{mit} \quad J_n = \int_0^{\pi} \sin^n \alpha \ d\alpha.$$

Sie gilt, wenn man $V_0 = 1$ setzt, auch noch für n = 1. Also ist $V_n = J_1 J_2 \dots J_n$. Durch partielle Integration ergibt sich

$$J_{m} = \frac{m-1}{m} J_{m-2}, \tag{1}$$

und daraus folgt

$$\frac{V_n}{V_{n-2}} = J_n J_{n-1} = \frac{n-1}{n} J_{n-1} J_{n-2} = \cdots = \frac{1}{n} J_1 J_0 = \frac{2 \pi}{n}.$$

Nach (1) ist

$$\lim_{m \to \infty} \frac{J_{m-1}}{I_m} = 1$$

und daher

$$\frac{2\pi}{n} = \frac{4}{n} \cdot \frac{J_0}{J_1} = \frac{4}{n} \lim_{N \to \infty} \prod_{k=1}^{N} \frac{(2k)^2}{(2k-1)(2k+1)} = \lim_{N \to \infty} \frac{4}{n} \left[\prod_{k=1}^{N} \left(\frac{2k}{2k+1} \right)^2 \right] (2N+1).$$

Ferner ist

$$\frac{1}{n} = \left[\prod_{k=1}^{N} \frac{n+2k}{n-2+2k} \right] \frac{1}{n+2N};$$