Kleine Mitteilungen

Objekttyp: Group

Zeitschrift: Elemente der Mathematik

Band (Jahr): 28 (1973)

Heft 5

PDF erstellt am: **04.06.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

paths must be G itself. We therefore conclude that every vertex other than a and b has degree 2, and deg $a = \deg b$ is odd. Also, if a and b are adjacent, then G - ab is homeomorphic from K(2, 2m); and if a, b are nonadjacent, then G is homeomorphic from K(2, 2m - 1), where $m \ge 1$.

S. F. Kapoor¹), Western Michigan University, USA

REFERENCES

- [1] G. CHARTRAND and A. T. WHITE, Randomly Traversable Graphs, El. Math. 25, 101-107 (1970).
- [2] F. HARARY, Graph Theory (Addison-Wesley, Reading 1969).
- [3] J. MITCHEM, Hypo-Properties in Graphs, The Many Facets of Graph Theory (G. Chartrand and S. F. Kapoor editors), Lecture Notes in Mathematics No. 110 (Springer-Verlag, Berlin 1969), p. 223-230.
- [4] O. Ore, A Problem Regarding the Tracing of Graphs, El. Math. 6, 49-53 (1951).

Kleine Mitteilungen

New Quadratic Forms with High Density of Primes

Let p_{min} be the smallest prime contained in a quadratic form of the shape $f(x) = Ax^2 + Ax - C$ and let n_{icp} be the number of initial consecutive primes of f(x), then, by means of a CDC 6400 computer, all $f(x) = Ax^2 + Ax - C$ were investigated for A < 10, $C < 2.10^5$, and $p_{min} > 47$. In Table 1, the number below C is the number of all primes of f(x) for x < 100, and p_{min} is the number in parentheses.

For each form $x^2 + x - C$ we have also a form $9y^2 + 9y - (C - 2)$, because the substitution x = 3y + 1 transforms $x^2 + x - C$ into $9y^2 + 9y - (C - 2)$; hence, each third term of $x^2 + x - C$ (starting with the second) belongs to $9y^2 + 9y - (C - 2)$. Similarly, for each form $2x^2 - C$ we have also a form $8z^2 + 8z - (C - 2)$, because the substitution x = 2z + 1 transforms $2x^2 - C$ into $8z^2 + 8z - (C - 2)$; hence, each second term of $2x^2 - C$ (starting with the second) belongs to $8z^2 + 8z - (C - 2)$. For the forms $2x^2 - 119131$ and $2x^2 - 186871$, related to the forms with A = 8 in Table 1, we have 64 and 61 primes, respectively, for x < 100.

Table 1 gives the impression that there might be no forms with A=4. This is not so. In a test run with A<10, $10^8-5000< C<10^8$, and $p_{min}>47$, the forms $x^2+x-99995659$, $9x^2+9x-99995657$, and $4x^2+4x-99996937$ were discovered, all with $p_{min}=53$.

The form $x^2 + x - 53509$ with $p_{min} = 61$ is due to N.G.W.H. Beeger [1] in 1938, the forms $x^2 + x - 90073$ with $p_{min} = 53$ and $x^2 + x - 169933$ with $p_{min} = 59$ are due to the author [2] in 1967.

Two hundred years ago, Euler published his famous quadratic form $x^2 + x + 41$ with $p_{min} = 41$ and $n_{icp} = 40$. This form was believed to have the highest density of primes of all quadratic forms $A x^2 + B x \pm C$ discovered till now. Many forms were found with $p_{min} > 41$ and the second differences greater than 2; but the corresponding

¹⁾ Research partially supported by National Science Foundation grant GP 9435.

C were also higher, and the primes became more and more scarce. Hence, the author concluded if there exists a quadratic form yielding more primes than Euler's, it must have p_{min} , C, and the second differences comparatively small, and on March 10, 1972, he found the amazingly simple form $2x^2 - 199$ with $p_{min} = 37$. Here, the second differences are 4; but this deficiency (difference 4 instead of 2) is balanced by the fact, that $2x^2 - 199$ has only 4 primes below 100, namely 37, 43, 71, and 89, while $x^2 + x + 41$ has 8 of them. Hence, one would expect the density of primes in the forms $2x^2 - 199$

Table 1. Quadratic	Forms Ax^2	+Ax-C	with $p_{min} > 47$
--------------------	--------------	-------	---------------------

	A = 1	A = 2	A = 3	A = 4	A=5	<i>A</i> = 6	A = 7	A = 8	A = 9
$C < 2.10^4$					17,543 76(53)		_	-	
$2.10^4 < C < 4.10^4$			24,967 77(53)			25,913 77(53)	-		
$4.10^4 < C < 6.10^4$	53,509 63(61)	58,193 64(53)			_	58,313 75(59)	44,893 82(53)		53,507 71(61)
$6.10^4 < C < 8.10^4$		_	71,867 71(61)		65,063 72(53)	78,823 69(53)	72,973 74(53)		
$8.10^4 < C < 10.10^4$	90,073 67(53)		95,357 64(67)			96,739 66(53)	_		90,071 65(53)
$10.10^4 < C < 12.10^4$				_	101,429 74(71)		112,501 70(71)	119,129 62(59)	
$12.10^4 < C < 14.10^4$	-	_	_		_	130,379 67(61)			
$14.10^4 < C < 16.10^4$	_	_			_	142,463 66(67)	_		_
$16.10^{4} < C < 18.10^{4}$		165, 7 13 64(61)	172,027 59(53)		172,313 62(53)	174,479 69(59)	165,541 73(53)		169,931 66(59)
$18.10^4 < C < 20.10^4$		174,281 64(61)			181,817 73(71)	183,133 72(53)	195,553 72(67)	186,869 62(59)	

Table 2. Euler's Form $x^2 + x + 41$ versus Karst's Form $2x^2 - 199$

Form,	Prim	Primes of $f(x)$ for $x <$								
pmin, nicp	100	200	300	400	5 00	600	700	800	900	1000
$x^2 + x + 41, 41, 40,$	86	156	211	270	326	383	431	479	531	581
$2x^2-199, 37, 28,$	88	150	216	273	332	382	445	493	546	598
$9x^2 + 9x + 43, 41, 13,$	69	124	177	222	263	303	347	395	439	485
$8 x^2 + 8 x - 197, 37, 31,$	77	138	193	247	295	345	402	455	503	553

and $x^2 + x + 41$ about equal, while the density of primes in $8x^2 + 8x - 197$ is about 1/8 higher than in $9x^2 + 9x + 43$. Table 2 shows the facts which end the 200-year-old supremacy of $x^2 + x + 41$.

Edgar Karst, University of Arizona, Computer Center

LITERATURVERZEICHNIS

- Luigi Poletti, Il contributo italiano alla tavola dei numeri primi, Riv. Mat. Univ. Parma 2, 417-434 (1951).
- EDGAR KARST, The Congruence $2^{p-1} \equiv 1 \pmod{p^2}$ and Quadratic Forms with High Density of [2] Primes, El. Math. 22, 85-88 (1967).

Kennzeichnung der Klasse eines Ringes endlicher Klasse durch Kommutatormengenprodukte

Ein vom Nullring 0 verschiedener Ring R heisst Ring der endlichen Klasse n mit $n \in N$ genau dann, wenn $_{n}R = 0$, jedoch $_{n-1}R \neq 0$.

Hierbei sei N die Menge der natürlichen Zahlen,

$$r \circ s := rs - sr$$
 für $r, s \in R$,

 $S \circ T := \{s \circ t \mid s \in S \text{ und } t \in T\}$ für Teilmengen S und T von R und mittels Definition durch vollständige Induktion ${}_{\mathbf{0}}R := R$ und ${}_{i}R$ das von ${}_{i-1}R \circ R$ erzeugte zweiseitige Ideal [3; S.59] und R_0 : = R und R_i : = $R_{i-1} \circ R$ für alle $i \in N$.

S.A. Jennings [2; Theorem 5.6, p. 350 und Theorem 6.5, p. 353] hat gezeigt, dass ein Ring R genau dann endliche Klasse besitzt, wenn es $m \, \varepsilon \, N$ gibt, so dass $R_{\it m} = 0$ und $_1R$ nilpotent [4; S.200] ist.

W. Streb [5; S.137] hat eine von Jennings [1; S.597] aufgeworfene Frage aufgegriffen und gezeigt, dass ein Ring R, der $R_m = 0$ mit $m \varepsilon N$ erfüllt, nicht notwendig Ring endlicher Klasse ist, dass also die bei der Definition von ¡R gegenüber der Definition der Kommutatormengen R_i eingeschalteten Idealbildungen wesentlich sind.

Während Jennings sich mit der Eigenschaft, Ring endlicher Klasse zu sein, befasst hat, betrachten wir für jedes $n \in N$ die Eigenschaft, Ring der Klasse n zu sein, und zeigen:

Hauptsatz: Sei $n \geq 2$: R ist Ring der Klasse n genau dann, wenn alle Kommutatormengen produkte (i. Z. KMP) von R der Länge n, jedoch nicht alle KMP von R der Länge n-1 gleich 0 sind.

(R ist Ring der Klasse 1 genau dann, wenn $R \neq 0$ und $R_1 = 0$).

Hierbei heisse für Kommutatormengen R_{ij} von R das Produkt $\prod_{j=1}^m R_{ij}$: $= \{\prod_{j=1}^m b_j \mid b_j \in R_{ij}, \ 1 \leq j \leq m\}$ KMP von R der Länge n genau dann, wenn $\sum_{j=1}^m i_j = n$ und $i_j \geq 1$

für $1 \le i \le m$, wobei m keiner weiteren Beschränkung unterliegt. Im folgenden bezeichnet R immer einen Ring. Wir vereinbaren, dass Multiplikationen vor Kommutatorbildungen o auszuführen sind, falls keine Klammern stehen. Das Symbol 0 wird gleichzeitig für das Nullelement von R und die Menge, welche nur das Nullelement enthält, verwendet.

Satz 1: Z(R): = $\{x \mid x \in R \text{ mit } x \circ r = x(r \circ s) = 0 \text{ für alle } r, s \in R\}$ ist ein Ideal.

Beweis: Für $x, y \in Z(R)$ und $t \in R$ ist nach [3; S.59]

$$x - y$$
, tx , $xt \in Z(R)$

zu zeigen. Beachtet man tx = xt, so gilt für alle r, $s \in R$:

$$(x-y)\circ r = x\circ r - y\circ r = 0$$
, $(x-y)(r\circ s) = x(r\circ s) - y(r\circ s) = 0$,
 $tx\circ r = xt\circ r = x(t\circ r) + (x\circ r)t = 0$ und $xt(r\circ s) = tx(r\circ s) = 0$.

Satz 2: Für alle $n \in N$ gilt:

 $_{n}R = 0$ genau dann, wenn $_{n-1}R \subseteq Z(R)$.

Beweis: Aus $_{n-1}R \circ R \subseteq _{n}R = 0$ folgt

$$x \circ r = 0$$
 und $x(r \circ s) = xr \circ s - (x \circ s)r = 0$

für alle $x \in {}_{n-1}R$ und $r, s \in R$, da mit x auch xr Element des Ideals ${}_{n-1}R$ ist. Somit ist ${}_{n-1}R \subseteq Z(R)$.

Aus $_{n-1}R\subseteq Z(R)$ folgt $x\circ r=0$ für alle $x\in _{n-1}R$ und $r\in R$, also $_{n-1}R\circ R=0$ und hiermit $_{n}R=0$.

Satz 3: Für alle $n \in N$ mit $n \geq 2$ ist gleichwertig:

- a) $\prod_{i=1}^{m} R_{ij} = 0$ für alle KMP von R der Länge n.
- b) $\prod_{j=1}^{m} R_{ij} \subseteq Z(R)$ für alle KMP von R der Länge n-1.

Beweis: Aus (a) folgt (b):

1. Für jedes KMP $\prod_{j=1}^{m} R_i$ von R der Länge n-1 ist $(\prod_{j=1}^{m} R_{ij})R_1$ als KMP von R der Länge n gleich 0.

Bei 2. und 3. wird eine Fallunterscheidung getroffen:

- 2. Ist $\prod_{j=1}^{m} R_{ij}$ KMP von R der Länge n-1 mit m=1, so gilt $\prod_{j=1}^{m} R_{ij} = R_{n-1}$. Also ist $\prod_{j=1}^{m} R_{ij} = R_{n-1} \cap R = R_n$ als KMP von R der Länge n gleich 0.
- 3. Sei nun $\prod_{j=1}^{m} R_{ij}$ beliebiges KMP von R der Länge n-1 mit $m \geq 2$ und $b = \prod_{j=1}^{m} b_j$ mit $b_j \in R_{ij}$ beliebiges Element des KMP. Wir zeigen $b \circ r = 0$ für beliebige $r \in R$: Wendet man die Umformung

$$\star xy \circ r = (x \circ r)y + x(y \circ r)$$

der Reihe nach auf $x = b_k$ und $y = \prod_{j=k+1}^m b_j$ für $k = 1, 2, \ldots, m-1$ an und rechnet man jeweils sofort nach den Distributivgesetzen aus, so erhält man

$$(\prod_{j=1}^{m} b_{j}) \circ r = (b_{1} \circ r) (\prod_{j=2}^{m} b_{j}) + \sum_{k=2}^{m-1} (\prod_{j=1}^{k-1} b_{j}) (b_{k} \circ r) (\prod_{j=k+1}^{m} b_{j}) + (\prod_{j=1}^{m-1} b_{j}) (b_{m} \circ r) .$$

Hierbei ist wegen $b_k \circ r \in R_{i_k+1}$ für $1 \le k \le m$ jeder der m Summanden auf der rechten Seite Element eines KMP von R der Länge n und somit gleich 0. Also gilt

$$b \circ r = (\prod_{j=1}^m b_j) \circ r = 0.$$

Insgesamt folgt $(\prod_{j=1}^{m} R_{ij}) \circ R = 0$ für jedes KMP von R der Länge n-1 mit $m \geq 2$.

Nach 1. bis 3. gilt für jedes KMP $\prod_{j=1}^m R_{ij}$ von R der Länge n-1 $(\prod_{j=1}^m R_{ij})R_1 = (\prod_{j=1}^m R_{ij}) \circ R = 0$ und damit $\prod_{j=1}^m R_{ij} \subseteq Z(R)$.

Aus b) folgt a):

Wir führen den Beweis durch vollständige Induktion nach den Indizes i_m der KMP $\prod_{j=1}^m R_{ij}$ von R der Länge n:

- 4. Für jedes KMP $\prod_{j=1}^{m} R_{ij}$ von R der Länge n mit $i_m = 1$ ist $\prod_{j=1}^{m-1} R_{ij}$ KMP von R der Länge n-1 und $R_{i_m} = R_1$. Also gilt $\prod_{j=1}^{m-1} R_{i_j} \subseteq Z(R)$ und somit weiter $\prod_{j=1}^{m} R_{i_j} = (\prod_{j=1}^{m-1} R_{i_j}) R_1 = 0$.
- 5. Wir nehmen $\prod_{j=1}^{m} R_{ij} = 0$ für alle KMP von R der Länge n mit $i_m = k$ an und schließen auf $i_m = k + 1$, wobei $1 \le k \le n 2$:

Sei also $\prod_{j=1}^{m} R_{ij}$ beliebiges KMP von R der Länge n mit $i_m = k+1$ und $b = \prod_{j=1}^{m} b_j$ mit $b_j \in R_{ij}$ beliebiges Element des KMP. Wir zeigen, dass unter obiger Annahme b = 0 gilt:

 $Zu \ b_m \in R_{i_m} = R_{k+1} \ \text{gibt es } c \in R_k \ \text{und } r \in R \text{, so dass } b_m = c \circ r \text{. Für das Element}$ $(\prod_{j=1}^{m-1} b_j) c \ \text{des KMP} \ (\prod_{j=1}^{m-1} R_{i_j}) R_k \ \text{von } R \ \text{der Länge} \ n-1 \ \text{gilt} \ (\prod_{j=1}^{m-1} b_j) c \in Z(R) \ \text{und somit}$ i = 1

$$\star \star \begin{pmatrix} m-1 \\ (\prod b_j) c \circ r = 0.$$

Wendet man * der Reihe nach auf $x = b_k$ und $y = (\prod_{j=k+1}^{m-1} b_j)c$ für $k = 1, 2, \ldots, m-2$ und schliesslich auf $x = b_{m-1}$ und y = c an und rechnet man jeweils sofort nach den Distributivgesetzen aus, so erhält man $(\prod_{j=1}^{m-1} b_j)c \circ r =$

$$(b_1 \circ r) \left(\prod_{j=2}^{m-1} b_j \right) c + \sum_{k=2}^{m-2} \left(\prod_{j=1}^{k-1} b_j \right) \left(b_k \circ r \right) \left(\prod_{j=k+1}^{m-1} b_j \right) c + \left(\prod_{j=1}^{m-2} b_j \right) \left(b_{m-1} \circ r \right) c + \left(\prod_{j=1}^{m-1} b_j \right) \left(c \circ r \right).$$

Hierbei sind die ersten m-1 Summanden auf der rechten Seite wegen $b_k \circ r \in R_{i_k+1}$ für $1 \le k \le m-1$ und $c \in R_k$ Elemente von KMP $\prod_{j=1}^m R_{i_j}$ von R der Länge n, deren letzter Faktor $R_{i_m} = R_k$ ist. Nach obiger Annahme sind alle diese Summanden gleich 0. Wegen** gilt dann auch für den letzten Summanden $b = (\prod_{j=1}^{m-1} b_j) \ (c \circ r) = 0$.

Insgesamt folgt unter der obigen Annahme $\prod_{j=1}^m R_{ij} = 0$ für alle KMP von R der Länge n mit $i_m = k+1$.

6. Ist $\prod_{j=1}^{m} R_{ij}$ KMP von R der Länge n mit $i_m = n$, so gilt $\prod_{j=1}^{m} R_{ij} = R_n$. Also ist $\prod_{j=1}^{m} R_{ij} = R_n = R_{n-1} \circ R = 0$, da $R_{n-1} \subseteq Z(R)$ für das KMP R_{n-1} von R der Länge n-1 gilt. Nach 4. bis 6. ist jedes KMP von R der Länge n gleich 0. Wir beweisen nun den Hauptsatz, indem wir für alle $n \in N$ zeigen: R = 0 genau dann, wenn alle KMP von R der Länge R gleich R sind.

Beweis: Wir führen den Beweis durch vollständige Induktion:

- a) Die Aussage ist für n = 1 trivial für alle Ringe R.
- b) Wir nehmen die Richtigkeit der Aussage für n = k für alle Ringe R an und schliessen auf n = k + 1:

 $_{k+1}R = 0$ genau dann (nach Satz 2), wenn $_k R \subseteq Z(R)$

(d.h. $_k(R/Z(R))=0$ [3; S.62]), genau dann (nach Annahme), wenn $\prod_{j=1}^m R_{ij} \subseteq Z(R)$ für jedes KMP von R der Länge k (d.h. $\prod_{j=1}^m (R/Z(R))_{ij}=0$ für jedes KMP von R/Z(R) der Länge k), genau dann (nach Satz 3), wenn $\prod_{j=1}^m R_{ij}=0$ für jedes KMP von R der Länge k+1.

LITERATURVERZEICHNIS:

- [1] S. A. Jennings, On Rings whose Associated Lie Rings are Nilpotent, Bull. Am. Math. Soc. 53, 593-597 (1947).
- [2] S.A. Jennings, Central Chains of Ideals in an Associative Ring, Duke Math. J. 9, 341-355 (1942).
- [3] B. L. VAN DER WAERDEN, Algebra, erster Teil (Springer-Verlag, 1960).
- [4] B.L. VAN DER WAERDEN, Algebra, zweiter Teil (Springer-Verlag, 1959).
- [5] W. Streb, Über Algebren mit nilpotenten assoziierten Lie-Ringen, R. c. Semin. mat. Univ. Padova XLVI, S. 137-139 (1971).

Elementarmathematik und Didaktik

Das Tanzkursproblem

Im Rahmen eines Seminars über elementare mathematische Probleme an der Universität Basel warf Prof. Scarpellini im Zusammenhang mit dem Heiratssatz¹) das Tanzkursproblem auf, das ihm ein Volkswirtschafter vorgelegt hatte. Für beide war das Problem offen. In diesem Beitrag wird eine konstruktive Lösung des Tanzkursproblems dargelegt.

¹) Vgl. etwa K. Jacobs: Selecta Mathematica I, Heidelberger Taschenbuch, Bd. 49, Berlin-Heidelberg-New York, 1969.