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Application ofnon-linear programming to plane geometry

1. Introduction

The purpose of this paper is to show how one may obtain geometrie inequahties
by means of purely non-geometric methods. An advantage of this approach is that
those inequalities may be viewed in a somewhat wider setting than that given by
mere plane geometry. Although we intend to prove only two inequahties, we
strongly feel that others may be found in a similar fashion. The method to be
used is taken from the field of non-linear programming, to be more specific, we
shall employ an adopted version of the Kuhn-Tucker theorem.
To illusträte our point, we have selected the following inequalities:

ab + bc + ca<kx(a + b + c)2 with kx= - — + 2\fl (1.1)

(aß-ba)2 + (by-cß)2 + (ca-ay)2<k2(a + b + c)2 with k2=-~n2. (1.2)

and

In (1.1) the quantities a,b and c stand for the sides of an obtuse triangle and in (1.2)
a,b and c are the sides and a,ß and y are the corresponding angles (measured in
radials) of an arbitrary triangle.
The first inequality is proved in [3] by means of an entirely geometrie argument.
Note that (1.1) with constant kx=l/3 holds for any non-equilateral triangle.
However in that case the inequality becomes rather trivial (cf. [2], 1.1, p. 11).
The second inequality has more stature. A proof may be found in [5]. This proof
uses both geometrie and non-geometric methods. See also [2], 3.5, p. 38.

2. The Kuhn-Tucker theorem

Let/,gl9 gm be real-valued functions defined on a subset X of R". Optimization
problems, which can be put into the form

Maximize/(x), subject to l8^]^ f™ /==1'-'mi xeX (2.1)JK ' J lg/W==0 for i mx+l,...,m
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are the subject matter of what is known as programming', linear programming
when the functions/gx,..., gm are all linear functions and non-linear programming
otherwise.
We define the set C as follows:

C={xeX\gx(x) 0 for i=l, ...,mxAgx(x) 0 for i mx+l, ...,m) (2.2)

and we shall always assume that this so-called constraint set is non-empty.
If C is compact (i.e. closed and bounded) and / continuous, the existence of a

Solution to problem (2.1) is garanteed by the following well-known theorem:

Theorem A (Weierstrass). Let C be a compact subset of Rn and suppose that the

function f: Rn -»R is continuous. Then the restriction off to C attains a (global)
maximum and a (global) minimum.

Often the constraint set is unbounded. In that case it is not always easy, if at all
possible, to prove the existence of a Solution to (2.1). The only existence theorems
known for such a Situation relate to concave (or convex) programming and
quadratic programming.
We suppose for the moment that a Solution does exist. In order to find the maximal
value of/ attained on C, the following theorem could be of some use, although in
practice it is not often applied in a constructive way.

Theorem B (Kuhn-Tucker). Let f, gx, gm be real-valued totally differentiable
functions defined on a non-empty open subset X ofRn. Further, let C be defined as in
(2.2). For every xeC, we define E(x) to be the set ofall indicesje{l,..., mx}for which

gj(x) 0. Moreover, let fattain a local maximum on C in the point x. Assume that at
least one of thefollowing regularity conditions is satisfied:

Rl. All contraintfunctions gx are linear;
R2. The set of gradient vectors {Vgx(x)\ieE(x)vie {mx+ l, m}} is linear
independent.

Then the following conditions (first order conditions or Kuhn-Tucker conditions) are

fulfilled:
There exist real numbers Xx, ...,Xm such that

m

v/(*)+£*.*,(*)-<>
Xxgx(x) 0, /=l,...,m
g,(x)ä_0 and X&O, i~l,...,mx ^gi(*)«0, i~mx+l,...,m.

Remarks: The notation Vf(x) Stands for 'the gradient of/in x9 i.e.

Vf(x):=(df/dxx,...,df/dxn)x^.
Proofs of theorem B can be found in various places e.g. [1], p. 121.
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There exist a wide variety of regularity conditions (cf. [4], chapter 1, section D).
Wre have chosen Rl and R2 merely, because they prove sufficient for the
apphcations selected.
On reversing the relevant inequality signs and replacing the phrase local maximum'
by 'local minimum' in theorem B, we obtain an analoguous theorem for the
problem:

Minimize/(jc), subject to {g,?J^J ?r /.==1'-'mi xeX (2.1)'JX J \gl(x) 0 for i mx+l,...,m J

3. Applications to plane geometry

In this section we shall give proofs of the inequalities mentioned in the introduction.

Lemma 1. The problem

max f(x) xxx2 + x2x3 + x3xx

subject to

xx^0, x2=0, *3i^0
xx _= x2 + Xi
X i + x2 + x3 1

has a Solution. This maximum is attained in one point only, namely x (— 1 +v2~,
l-VT/2, l-VJ/2)andf(x)=-5/2 + 2\r2.

Proof: Clearly /is a continuous function on R3 and the constraint set C is compact.
This shows the existence of a Solution M, attained in a point x (xx,x2,x3) say.
Since xeC, it is clear that xx^0. Moreover, if x2=x$ 0, then M=0. Howrever,

/ is not identically zero on C. So x2 and x3 cannot vanish simultaneously. Now
suppose that x2x3 0. Because of symmetry, we may assume that x2=0 and x3^0.
Then M=xxx3^l/4, in view of the relation xx + x3=l. On the other hand,
f(5t,4t,3t) 41t2 and (5t,4t,3t)eC iff t=l/l2. But/(5/12, 4/12, 3/12)> 1/4.
Consequently, x2x3=£0. It is now easy to check that condition R2 of theorem B is

satisfied in x. Hence, real numbers Xx,X2,X3,fi,v exist such that (see (2.3)):

x2 + x3 + Xx + 2juxx + v 0

xx + x3 + X2-2/lix2 + v 0

xx + x2 + X3 — 2 /ux3 + v 0

Xji^O, x2^0, x3=0 Xxxx X2x2 X3x3 0

x i ^ x\ + x\ ju (x2 — x\—x2) 0

xx + x2 + x3 1 v(xx + x2+x3— 1) 0

Xx^0, X2=0, X3^0, ju=0.

Since xxx2x3 ^ 0, it follows that Xx X2 X3 0.
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From the first three equations we obtain by addition

0=2(xx + x2 + x3) + Xx + X2 + X3 + 2ß(xx — x2 — x3) + 3v
2 + 2ju(xx — x2 — x3) + 3v.

If // 0, then v=—2/3 and thus \ — xx=l — x2=l — x$=2/3. Hence xx x2 x3
l/3, but this contradicts x2^x2 + x2. Thus ju>0 and consequently x2x x2 + x3.

From

v+l=jc1(l-2//) jc2(l + 2/i) x3(l + 2/i)

it follows that x2 x3 and hence x\=2x\ which gives xx x2V~2'. Then xx + x2 + x3
1 shows that x^-l + VT and x2 x3= l-VT/2. We also find/* 3/2-v^2~

andv=5-4\/2".
From this lemma, the following theorem can be easily deduced.

Theorem 1. Let a,b andc be the sides ofan obtuse triangle. Then inequality (1.1) holds
and the constant kx is best possible.

Proof: Put xx a/(a + b + c), x2 b/(a + b + c) and x3 c/(a + b + c). The quantities
xX9x2,x3 satisfy xx>0, x2>0, x3>0, xx + x2 + x3= 1 and x2>x2 + x2 if we assume,
without loss ofgenerality, that a max (a, b, c).

Lemma 1 shows that equality can only be reached in a right isosceles triangle
with 2b 2c a\f2 That kx is best possible also follows from the Observation that
for each sufficiently small positive number ö, the triangle with sides

a= - 1 + V~2+5, 2b 2c= 2- V2 -8 is obtuse.

Inequality (1.2) is somewhat harder to prove. We need the following lemma.

Lemma 2. The problem

maxf(x;y) (xxy2-x2yx)2 + (x2y3-x3y2)2+(x3yx-xxy3)2

subject to

xx+x2+x3= 1, yi+y2+y3z= 1

-X!+l/2^0
xx-x2=o y\-y2=®
x2-x3=o 72-^3^0

x3=0 y3 0

is solvable. The maximum M= l/4 is attained at x (l/2, l/2, 0; 1, 0, 0) and at no
otherpoint ofC.

Proof: The function/is continuous on R6 and the constraint set C is compact. Let/
attain its maximum M on C in the point x (xx,x2,x3; ^1,^2^3)« Since all constraint
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functions are linear, the regularity condition Rl. of theorem B is fulfilled. Hence,
there exist real numbers a0, ax, a2, a3, ßx, ß2, ß3, X, // such that (see (2.3) of
theorem B):

df df
-a0 + ax + X 0, ~-+ßx + ju 0

dxx ^'"f" ~> dyi

df dfJ
-ax + a2 + X 0 -zL--ß\ + ß2 + ß Q

dx2 l z
Öy2

df df
-a2 + a3 + ;i 0 ~--ß2 + ß3 + li 0

dx3 dy3

-*i+1/2^0, a0(-X!+l/2) 0

xx-x2=0 ax(xx-x2)=0, y\-y2=0, ß\(yi-y2):==0
x2-x3=o a2(x2-x3)=o y2-y3=® ß2(y2-y3)==o

x3=0 a3x3 0 y3 ® ^3^3 0

XX + X2 + X3= 1 ^1+^2 +^3= 1

a0^0, ax 0, a2=0, a3i_0, ßx<=0, ß2=0, ß3=0.

First of all we note that/(l/2, l/2, 0; 1, 0, 0)= l/4. Hence M=max/i^ l/4.
Since 3y3^yx+y2+y3=l and 0=^x2^xx= l/2, we have ß2 — ß3 — ju df/dy3

2y3 (x\ + x22)-2x3(xxyx + x2y2)^ 1/3.

Moreover, as a function ofyx,y2,y3 alone, the function/is homogeneous of degree 2.

Hence, by Euler's theorem

df df df
dy\ dy2 dy3

Combining these two results, we obtain

2f+ ß2~ß3= y.
Now, if ß3 0 then ß2^0 implies that/^ l/6. This means that we may assume that
ß3>0. But then v3 0.
As a function of xx,x2,x3 alone, the function/is also homogeneous of degree 2.

Hence, as before,

df df df „ a02f=xx~ +x2^ + x3-z~-=-X+~1

dxx l dx2
3

dx3 2

Further, df/dx x + df/dx2 a0-a2-2X= -a2 + 4f and also df/dx x + df/dx2
2xx(yx-y2)2-2yx(xx-x2)(yx-y2)=l, since y3 0. Thus

-a2 + 4/^l.
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Suppose now that a2 0. Because we are only interested in values of f^ l/4,it
follows from the above that

l 4f=2xx(yx-y2)2-2yx(xx-x2)(yx-y2)=l

and this means that

2xx(yx-y2)2=l and 2yx(xx-x2)(yx-y2)=0.

This is only possible when xx x2=l/2 andyx 1,y2=0. Consequently, x3 0.
After some calculation we find that 0___ a0_g 1, ax (1 + a0)/2, (a2 0), a3= (1 - a0)/2,
ßi^O, ß2= 1 and/?3=3/2. Hence the first order conditions are satisfied in the point
(1/2, 1/2,0; 1,0,0).
We continue by assuming that x^(l/2, l/2,0; 1,0,0). Then clearly a2>0
and x2 x3. Now 2f+a0/2-ax df/dxx 2y2(xxy2-x2yx) 2xxy2(y2-yx)
+ 2yxy2(xx — x2)^yxy2^ l/4, becauseyx+y2= 1 (recall that v3 0). Hence,

2/-a,__|,

in view of a0=0. From ax 0, it follows that/_il/8. Hence suppose that a^O.
Then xx x2. Also x2=x3 and thus xx x2 x3= 1/3. We have

If ß2 0, then/= l/l8. And if ß2>0, then y2=y3 0 and thus >y1= 1. This implies
that 2/= ö//^! 4/9, since ^ 0(yx ^y2). But then/= 2/9 < 1 /4.
This proves the lemma.

Theorem 2. Let a, b, c be the sides and a, ß, y the corresponding angles of a triangle.
Then inequality (1.2) holds. Moreover, the constant k2 is best possible.

Proof: Put xx a/(a+b + c), x2=b/(a+b + c), x3=c/(a + b + c) and assume that
a^b^c. Further, put yx a/n,y2=ß/n andy3 y/n. Then xx + x2+x3=yx+y2+y3

1. Since b + oa, we have also x2 + x3>xx. This shows that xx< l/2. In view of
a^b^c, we have a^ß^y and consequently xx^x2^x3>0 and yx^y2^y3>0.
That k2 is best possible may be seen as follows (in fact the proof of lemma 2 already
gives evidence to that effect):
Let <5>0. Put yx a/n=l-(ö + ö2)/n, y2=ß/n ö/n, y3=y/n ö2/n and xx a

sin(ö + S2)/2ö, x2=b sind/2ö, x3=c= sind2/2ö. Now let ö tend tozero.

4. Postscript

The most difficult part of the foregoing method in order to obtain geometrie
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inequalities, lies in the choice of the constraint set. The relations between the
elements of a tnangle are often given in terms of circle functions. These functions,
when appearing m the constraint functions, greatly comphcate the determination of
points satisfying the first order conditions.

R. J. Stroeker, Erasmus University, Rotterdam
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Distance theorems in geometry

1. Introduction

The purpose of this note is to give a method for proving 'distance theorems' in
elementary plane geometry. As an application we give an easy proof of the Feuerbach

theorem and we solve an old problem ofA.H. Stone [3] problem E585.
Let (T) be any triangle A XA2A3 with vertices numbered in counter clockwise order.
Denote the interior angle at Ax by ax (i= 1,2,3), and the length of the opposite side

by av We use the notation P(xx,x2,x3) or (xx) to indicate that the distances of P
from the sides of (T) are proportional to xx,x2,x3 with the Convention that xx is

positive if P and Ax are on the same side of ax and negative otherwise. We shall also
use capital letters to denote complex numbers; thus, for example, (l/3)
(Ax+A2+A3) is the centroid of (T).
Our method is based on the following elementary lemma.

Lemma. Let M be a point in the plane of(T) satisfying

ZmxMÄ2=k, (1)

where the mx's are real numbers satisfying s3 mx + m2 + m3^0, and k is a constant
satisfying
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