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Benützung der zu vx parallelen Elationsachse durch P kann der Parabelscheitel nach
Abschnitt 3 konstruiert werden.

H. P. Paukowitsch, TU Wien
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The number of triangles in a triangulation of a set ofpoints
in the plane1)

1. Introduction

Our terminology and notation will be Standard except as indicated. A good
reference for undefined graph theoretic terms is [3].
In [1, 2] the authors discussed the question of the number of 3-cycles which could be

present in a planar graph onp points. In this paper, we want to consider essentially
the same question when thep points are infixedpositions in the plane. We will show
that this restriction does not limit the possible ränge of the number of 3-cycles unless
thep points are arranged in a unique, easily characterized configuration.

2. Statement of the problem and main results

Begin with a set P of /?_> 5 points in the plane, with no three of the points colhnear.
Suppose we draw straight line segments between pairs of points in P subject only to
the restriction that these segments do not intersect except at the points of P them-
selves, until it is impossible to add more segments in this manner. We call this
collection of line segments a triangulation ofP (since all the finite regions into which
these segments divide the plane are triangles). We will generally use T to denote a

triangulation of P. Note in particular that the üne segments comprising the
boundary of the convex hüll ofP will be included in every triangulation TofP.

1) This work was supported m part by the National Science Foundation under Grant ENG 79-09724
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We want to consider the number of triangles (or 3-cycles) in various triangulations
of P. To this end, let h denote the number of extreme points of the convex hüll of P.

(For brevity in the sequel, we will term this collection of h points the extreme points
ofP.) In any triangulation T ofP, it follows by Euler's well-known formula that the
number of 3-cycles each of which bounds a region (i.e., contains points of P in either
its interior or exterior, but not both) will be precisely lp-h-1 if h>3, and 2p-4 if
h 3. In addition, however, a triangulation T of P may have 3-cycles containing
points of P in both their interior and exterior. We will call such 3-cycles separating.
In [1, 2], it was shown that the number of separating 3-cycles must be between 0 and
either p — h ifh>3orp— 4 if/* 3. Our goal is to show that except for the two cases
described in the Statement of the theorem below, it is always possible to triangulate
P so as to obtain any number of separating 3-cycles in the indicated ränge.
We begin with the following result.

Lemma. Let P be a set ofp^S points in the plane, with no three of the points collinear.
Suppose P has h extreme points. Then there is a triangulation T of P without
separating triangles, unless h 3 and P has an extreme point x such that P—x has

p—l extreme points (see fig. 1). In this exceptional case, any triangulation of P
contains exactly p — 4 separating triangles.
Moreover, ifh<p and it is possible to triangulate P without separating triangles, then
it is possible to obtain such a triangulation with no 'chords' between extreme points of
P (i.e., with no line segments between extreme points of P except those comprising the
boundary ofthe convex hüll ofP).

Figure 1 Figure 2

Proof: Observe first that ifh=p, the desired triangulation is trivial (see fig.2). Hence
we assume h <p in the rest of the proof.
Noting that the lemma is readily verified for/? =5, we proceed by induction onp.
Suppose first that /?_>4. It is then easy to see that we can choose an extreme point x
of P such that P—x contains say ä'_>4 extreme points. If h'<p— 1, then by our
induction hypothesis, we can triangulate P—x without separating triangles or chords
between extreme points of P—x. It is then a simple matter to obtain the desired

triangulation of P (see fig.3). If h'=p-l, then P—x has extreme points y,z
positioned as shown in figure 4. (If y (resp., z) did not exist, we would have h=p
(resp., h 3), contrary to what we have assumed.) It is then a simple matter to
complete the desired triangulation ofP (see fig. 4).
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Figure 3 Figure 4

Suppose, therefore, that h 3. Let xx,x2,x3 be the extreme points of P. If P-x{ has
ht extreme points, where 4< ht <p — 1, for some /, then we can triangulate P without
separating triangles as in the last paragraph. Otherwise, P—xt has three extreme
points for each /. In particular, let x2,x3 and say x4 be the extreme points of P— xx.
Suppose first that P—xx-xl does not have/? —2 extreme points, for i=2,3,4. Then
by the induction hypothesis, we can triangulate P—xx without separating 3-cycles.
Call this triangulation T. It is easy to see that there will be a point x in the interior
of x2x3x4 such that xxtx4 is a nonseparating 3-cycle of T, and xxtxxx4 is convex,
for either i 2 or 3; without loss of generality, suppose this occurs for i=2 (see

fig. 5 a). We obtain a triangulation T of P without separating 3-cycles from V as

follows: Remove the line segment x2x4 from V, and add the segments xxx,xxx2,
xxx3 and xxx4 (see fig.5b). It is easily seen that the only way T could contain a

separating 3-cycle is if the üne segment xx3 belonged to T. But in that case, either

xx2x3 or xx3x4 would be a separating 3-cycle in T, a contradiction.
Suppose, therefore, that P—xx — xl has/?—2 extreme points, for some /=2,3 or 4.

We need to consider essentially two cases. If P — xx-x2 has/? —2 extreme points

*i

x4

X|

*4

*2 *3 *2 x3
Figure 5a Figure 5b
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X, oX,

X4

X2 X3

Figure 6a Figure 6b

(see fig. 6 a), then we can triangulate P without separating 3-cycles as shown in
figure 6b (assuming of course that P—x2 does not have/?- 1 extreme points).
On the other hand, if P—xx — x4 has p—2 extreme points (see fig. 7a), we can
triangulate P without separating triangles as shown in figure 7b. This completes the
proof for all but the exceptional case.

X|

X4

Figure 7a Figure 7b

Consider, therefore, the Situation when h 3 and P has an extreme point x such that
P—x contains/?— 1 extreme points. \.ety,z be the other extreme points of P. Then
in any triangulation T of P, there will be a point w inside xyz such that wyz is a

nonseparating 3-cycle in T (see fig. 8). It is then easy to see that the line segment wx
must also belong to T.
Consider the sets of points Px and P2 inside or on the 3-cycles wxy and wxz,
respectively. It is easy to see that Px — x has \PX\ — 1 extreme points, for /= 1,2. If

Figure 8
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\P,\ >5 for /= 1,2, it follows by the induction hypothesis that any triangulation T,

of P, must contain |_P,| — 4 separating 3-cycles. Moreover, the only other separating
3-cycles in T (besides those in Tx and T2) would be wxy and wxz. Hence the
number of separating 3-cycles in T will be

(\Pl\~4)+(\P2\-4) + 2=p-4,

as asserted. The cases when | Pt \ 3 or 4 are similar, and are, therefore, omitted.
This completes the proof of the lemma.
We can now State our main result.

Theorem. Let P be a set of p _> 5 points in the plane with no three of the points
collinear. Suppose P has h extreme points. Let A (T) denote the number of 3-cycles in a

triangulation TofP. Then
1. Ifh>4,

2p-h-2<A(T)<L3p-2h-2.

Moreover, ifa is any number in the indicated ränge, there is a triangulation TofP with
A(T)=a.

2. Ifh 3,

2/>-4<_z_(7)<_3/?-8.

Moreover, ifa is any number in the indicated ränge, then there is a triangulation TofP
with A(T)=a unless either
a) a 3p—9,or
b) P has an extreme point x such that p — x has /?— 1 extreme points. (In this case,

A(T)=3p- Sfor every triangulation T ofP.)

Proof: For case 2 a, it was shown in [1] that a maximal planar graph on p points
cannot contain exactly 3p — 9 3-cycles. Moreover, case 2b was covered in the
preceeding lemma. It only remains, therefore, to treat the nonexceptional cases.

Suppose first, therefore, that A_>4 as in case 1. Choose any (3p-2h-2-a)
nonextreme points of P, and let P' denote these points together with the h extreme
points of P. Triangulate P' without separating 3-cycles (this is possible by the

lemma). At this stage, we have exactly (2(3p-h-2-a)-h-2) 3-cycles. Then
recursively join each of the remaining (a-lp+ h + 1) points of P~P' by line
segments to the three points of the triangle in which it occurs. The resulting
triangulation of JP contains 2(3/?-/t-2-a)-/t-2+3(a-2/? + Ä + 2)=a 3-cycles
as desired.
Thus suppose A 3 as in case 2, but a^3p — 9. Ifa 3/?-8, recursively draw line
segments between each nonextreme point of P (taken in any order) and the three
points of the triangle in which it occurs. Ifa <>3p- 10, let us suppose for the moment
that we can choose a set S of three nonextreme points in P such that S, together
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with the extreme points of P, comprise a set of six points not of the type excluded by
case 2b. Then choose arbitrarüy an additional 3p- 10—a nonextreme points of P.
These additional points, together with S and the extreme points of P, will from a set
P' of 3p — 4—a points which again are not of the type excluded by case 2b. We
can, therefore, triangulate P' without separating 3-cycles; at this stage we have
exactly (2(3/? — 4 — a)— 4) 3-cycles. Now recursively draw line segments between
each of the remaining (a-2p + 4) points of P-P' and the three points of the
triangle in which it occurs to obtain a triangulation of P with exactly 2(3p-4-a)
-4+ 3(a — 2p + 4)=a 3-cycles.

x,

"Okx>-

Figure 9

To complete the proof, we need to establish the existence of the set S. Let the
extreme points of P he xx,x2,x3. Suppose that P—xt has three extreme points, say

yx,x} and xk, for each /. Then we can take S= {yx,y2,y3}. Otherwise, suppose that say
P—xx has at least four extreme points. Since P—xx does not have /?— 1 extreme
points, let x be a nonextreme point of P— xx. Then it is easy to see there exist
extreme points y,z of P—xx such that x is positioned in the interior of the convex
quadrilateralx2yzx3 (see fig.9). We can then take S= {x,y,z}.
This completes the proofof the theorem.

S. L. Hakimi, Northwestern University, Evanston, 111., USA,
and E.F. Schmeichel, San Jose State University, San Jose, Calif, USA
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