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Introduction
In the March 1970 issue of "Mathematics Magazine" the following problem appeared:
Is the triangle AABC in Fig. la equilateral? Four different Solutions to this problem
appeared in its November 1970 issue, and shortly thereafter the English geometer J.F. Rigby
generahzed the problem to other polygons [2], [3].2) In particular, he showed that the

Gegeben sei ein n-Eck f mit Eckpunkten PuPi**»**?** Auf den Seite. Pi~tP_«

t » it2»„M« {Fö **Pn) seien Punkte Ai festgelegt mit ÄtPt **Ä%f% m >„mA*Pn*
Ist P ein mgnllres Polygon* so ist offensichtlich dm tt* den Punkten AuMf *•+*&*
gebildete Polygon A ebenfalls i^pifc Der vorliegende Bettrüg beschäftigt sieh mit dm
Umketasng dteies Seltoses. Folgt ans der Reguteitlt des Polygons A aneh die Rep-
Imitat von _P? Bekannte Resultate (ftir n « %4f w& n 2 6 gpfftdfe) wetzen Wer eigtet
und p§mim* Bab^t verdient der Weg* den die Atitoten mmM®$®k MÄtt8tidigei to~

teresse. Das geometrische Problem wird in eine analytische Fragestellung übersetzt, die
im Ritatieft dynmteetter Systeme interpretiert wW: S$ ist dte Frage m beantworten,
ob eine gegebene reelle Funktion einen periodischen Punkt, d.h. ob dm zugehörige
dynmämh® System eine j^iiodisefce Bahn testet In dieser Ut&$^&mkm tsseea riefe

schliesslich auch experimentelI Informationen für den Fall n 5 gewinnen, der in
diesem Problem eine merkwürdige Sonderrolle zu spielen scheint usr

1) This work is partially supported by California State University, Long Beach.

2) Rigby also treated other types of "circumscribed polygons" and the analogous question for the hyperbolic
plane.
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quadrilateral circumscribing the square must itself be a square, but that there exists a

non-regular circumscribing hexagon (Fig. lb).
*>_

A2Az

a) b)

Fig. 1 The circumscribing hexagon has "period 2" (see Th. 1). The angles of /\AtPtAt+\ are 30°, 100°,
50° for i even and 10°, 140°, 30° for i odd.

To be precise, let A Ai... An and P=Pi... Pn (Ax and Px labelled counterclockwise)
be convex n-sided polygons (abbr. n-gons). Suppose that P is circumscribed about A
(i.e., _4,+i lies between Px and Px+i) with AXPX At+\Pt+i9 Fig. lb (we shall refer to P

as a circumscribing polygon). This paper is concerned with the question: if A is regulär,
is P necessarily regulär?

Besides the cases already mentioned, Rigby proved that the answer is negative for n > 6

even. In this paper we answer the question for the remaining values of n (Theorem 1,

part 1). In addition, we analyze the types of non-regular polygons that arise (Theorem
1, part 2).

The main results of this paper are given in the following theorem.

Theorem 1 Suppose a regulär n -gon A with sides equal to one is inscribed in an n -gon
P with AiPi A2P2 AnPn. Then

1. ifn 3,4 or n>l odd, then P must be regulär;

2. ifn>6 even, then P may be non-regular. Moreover, for n > 8, the angles and sides

of¥ must have period 2, i.e.: IPX LP3 • • and IP2 LP4 • • •; PXP2 P3P4

P5P6=>andP2P3=P4P5

Our approach differs markedly from Rigby's: a new theme of abundant and deficient
angles unifies our proof of part 1 of Theorem 1. The basic idea here is quite simple. It
is shown in Lemma 2 that for n > 6 the angles of a non-regular circumscribing n-gon
P must alternate between being larger than (abundant) and smaller than (deficient) the

angle of a regulär n-gon, and thus can only occur if n is even. A similar argument works
for n 3 and 4.
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To prove the second part of Theorem 1 we translate the geometrie question (whether
there are non-regular n-gons of period k) to an analytic one, namely: Does a certain
function / have a periodic point with period equal to k (k > 1 a divisor of n)? In
Theorem 2 the existence of period 2 points is proved, and in Theorem 3 it is shown that
there are no points of period greater than 2 if n > 6.

The paper is divided into two sections which contain the proofs of the first and second

parts of Theorem 1, respectively. The dynamics of the polygons P are discussed in
Remark 3, and a bifurcation diagram is given for the case of the hexagon (Fig. 6). A
picture of a non-regular pentagon along with graphs are given in Remark 4 at the end

of the paper.

1 The Cases in Which There are Only Regulär Circumscribing Polygons
Let A and P be as in Theorem 1. Let a denote ("~2)7r, the angle measure of a regulär

n-gon. Central to our discussion is the following notion for the angles of P: the angle
LPX is abundant (resp. deficient) if LPX > a (resp. LPX <a).
First we observe that if LPX - ol, for 1 < i < n, then P must be regulär. (The triangle
case is clear. If n > 4, noting that a is not acute we have £\AiPiA2 AA2P2A3. Hence

P\A2 P2A3 and P{P2 PXA2+A2P2 P2A3 + A3P3 P2P3.) Thus a non-regular
circumscribing polygon P must have both deficient and abundant angles since the sum
of its angles is na.
Geometrically it is easy to determine whether LPX is abundant or deficient. Given two
points A and ß, the locus of points P with IAPB equal to a given angle measure are

two circular arcs, one on each side of the segment AB. When A, B are Ax, Ax+i, and the

given angle measure is a, the arc which lies outside the side opposite the center of
A) of the segment AxA1+i will be referred to as the regulär arc on AxAx+i and denoted

by AxAx+i. (See Figs. 2, 3, and 4.) If Px lies inside (resp. outside) the regulär arc AtAt+\
then LPX> a (resp. LPX < a Thus LPX is abundant (resp. deficient) if and only if Px

lies inside (resp. outside) the regulär arc AtAt+\.
Next we show that a regulär arc and its

neighboring sides are tangent. Suppose n >

5, then the rays Ax-iAt and Ax+2Ax+i intersect,

say at Q. Suppose OQ intersects the

regulär arc AtAt+i at Rx, where O is the

center of the circle containing the regulär

arc A^A+i (Fig. 2).

Q

R

Ai Ai+\

O

Fig. 2 (n 6)
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Then

lAxQAx+i tt - 2lQAxAx+i tt - 2(tt - a) 2a - tt ;

lAxORt tt-2lAxRxO 7r- lAxRxAx+i =w-a.

n -4
-7T. (1)

Using these two equations we get

lOAxQ=7r-^lAxQAx+i-lAxORx=7r-(a-^)-(7r-a) ^.

This proves the following lemma for n > 5:

Lemma 1 Each regulär arc AxAx+i is tangent to its two neighboring sides Ax-iAx and
At+iAt+2 at At and At+i, respectively.

In fact it is easy to check that this Lemma also holds for n 3 and 4.

We make a simple but crucial Observation (needed in the proof of the following key
Lemma 2). Suppose Rt lies on the regulär arc AtAl+i. Join Rt to At+i and extend it
until it meets the next regulär arc At+iAl+2, say at Rt+i (Fig. 3a). Then AtRt _4i+ijR2+i.

(Proof. Since lAt+i a /.Rt implies IAx+iAxRx lAx+2Ax+iRx+i, we get by the

side-angle-angle theorem that AAxRxAx+i AAt+iRi+iAt+2.)

Fig. 3 a)

Rt+i

+i

+2 i+l

Pt

+ 1

+1

At +2 +1

R>

Fig. 3 b)
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Lemma 2 Let Pbea circumscribing n-gon with n >6.If/.Px is deficient (resp. abundant)
then IPt+i is abundant (resp. deficient).

Proof Since P is convex, the vertex Px lies inside AAxAx+iQ (Fig. 2). In view of Eq. (1),
LPX > ^pTr. On the other hand, if LPX is deficient then Px lies outside the regulär arc

AxAt+i (Fig. 3a). Thus the line segment PxAt+i intersects AtAl+i, say at Rt. We have

lAtRtPt n-a ^ which is < ^f^- if n > 6. Thus LPX > LAXRXPX and AXPX < AXRX.

Construct Rt+i from Rt as in the above Observation. Since AtRt Ax+iRx+i, the last

inequality becomes Ax+iPx+i < Ax+iRl+i. Since At+i,Rl+i and Pl+i are colhnear (they all

lie on the line PxAx+i), Px+i lies between Ax+i and Rt+\. So Px+i lies inside Ax+iAx+2 and

lPt+i is abundant.

The case that LPX is abundant can be argued similarly (see Fig. 3b): We now have Px is
between Rx and Ax+i (Rx,Rx+i again lie on regulär arcs) and IRX a > \ > IAXPXRX,
which implies AXRX < AXPX or Ax+iRx+i < Ax+iPl+i. Thus Rx+i is between Ax+i and Px+i

and lPx+i is deficient.

Remark 1. A similar argument yields: If LPX is deficient then lPx+i is deficient if n 3

or 4, and can be either abundant or deficient if n 5. On the other hand, if LPX is
abundant then lPl+i is abundant if n 3 and deficient if n 4 or 5.

Proof of Theorem 1, part 1: if n =3,4 or n > 7 odd, then any circumscribing n-gon P

must be regulär.

Suppose P is a non-regular circumscribing polygon. By the Observation at the beginning
of this section, at least one LPX is deficient. If furthermore n 3 or 4, by remark 1, the
existence of one deficient angle would imply that all angles are deficient, a contradiction.
If on the other hand n > 6 then, by Lemma 2, the existence of one deficient angle implies
that the angles alternate between abundant and deficient, which can happen only if n is

even.
We conclude this section with a remark

,-- ~-„ about the ränge of the length £ := AtPt.
Remark 2. For a circumscribing polygon P,

regulär or not, at least one LPX is > a, which
is > f if n > 4. By considering AAxPxAx+i,
we see that 0 < £ AXPX < AA+i L For
n 3 the largest possible value of £ is the
diameter At R -4= of the circle containing
the regulär arc, see Fig. 4.

Note that for each £ in the above ränge a

regulär circumscribing n-gon P can be
obtained by starting with Ri on the regulär arc
with _4ii?i £ and then construct R2, ...,Rn
as in the Observation before Lemma 2.

Thus there is a one-to-one correspondence
between points on a regulär arc and regulär
polygons P.

At At

Fig. 4
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2 The Cases of Non-Regular Circumscribing Polygons
In this section we will prove part 2 of Theorem 1. That is, it will be shown analytically
that whenever n > 6 is even there are non-regular n-gons P satisfying the conditions of
Theorem 1, and that, with the exception of the hexagon, all these polygons have period 2.

In [2] and [3] a geometrie proof is outlined for the existence of non-regular polygons,
but our analytic approach leads to a description of the types of non-regular polygons P.

We adopt the same notation as in section 1. Henceforth, n > 6, so by Remark 2 the

length £ := AxPt takes values in (0,1).
We consider the function / which for given £ computes 0t+i from the argument 0t, where
dt - IAx+iAiPx A periodic orbit of/ of period k corresponds to a polygon P of period k.
More precisely, if 0 is an angle between 0 and 27r/n such that the zth iterates fl(<ß)>0
are distinct for i 0,..., k - 1, fk((p) (p, and n is divisible by k, then the sides and

angles of the polygon P with lAt+iAtPt =/*(0), i 1,..., n, have period k. (This is a

consequence of basic theorems on triangles such as the side-angle-side theorem.)

Let ipt LAXAt+iPt. Then 9l+i =n-a-^t 27r/n -ij)t, where

*=___ (tAr'TtT\. ___ (,'ti>\).Y \AtAt+i-AiT J \l-£cos6tJ
and T is the foot of the perpendicular of Px onto the line AtAt+\. Therefore, we have

r/m 27r isin0 \f(0) arctan ——
n \l-£cos0 J

By Remark 2 there is exactly one regulär polygon P for each £. For £ fixed, let ß
represent the angle lA2AiPi of this regulär polygon. Note that f(ß) ß.

Lemma 3 f'(ß) < -1 ifand only if£> £o, andf'(ß) -1 only if£ £0, where

:=f4_3sm2^y\ (2)

Proof Let S be the foot of the perpendicular of A2 onto the line _4i?i in the case in
which P is regulär. Since n > 6, Pi lies between Ai and S. Then

£ A{S -PiS =cosß-csin/J, (3)

where c cot(Z_42?iS) cot(7r - a) cot(27r/n).
The derivative of / is given by

/(Ö)-l-2^cos0 +^ (4)

Since 1-2^cos 0+£2 > 0, we have 2^2-3^cos/?+l < 0 whenever/'(/?) < -1. Substituting
Eq. (3) into the above inequality leads to cot/3 > 2c + l/c. Since the cotangent function
is decreasing in the first quadrant we get ß < arccot(2c + 1/c) =: 7. But cos 6 - c sin 0

is decreasing in the first quadrant, so £ > cos 7 - c sin 7 (c2 + 1) / y/4c4 + 5c2 + 1

\/l +c2/\/l +4c2 which simplifies to lo- Since the argument is valid if all the inequality
signs are reversed (or replaced by equal signs) the assertion is proved.
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Lemma 4 Let h(0) =f2(0)-0, where f2 is the composition off with itself Then h'(ß) > 0

if£ > £o, and h'(ß) <Oif£< £0

Proof Since h'(0) f'(f (0))f'(9) - 1, we get h'(ß) [f'(ß)f - 1 Therefore, by the

previous lemma, it suffices to show thatf'(ß) < 1. But this is equivalent to ^cos/3 < 1.

We are now ready to establish the second part of Theorem 1: the next theorem deals

with period 2 circumscribing polygons, whereas Theorem 3 deals with higher penods.

Theorem 2 Let n > 6 be even Then there exists a non-regular circumscribing polygon
of period 2 for each £, £o < £ < £i, where £i := (2cos(27r/n))_1, and £o is defined in
Eq (2).")

Based on plots of f2, we conjeeture that for each £ e (£o9£\)9 there is only one penod
2 circumscribing polygon, and for £ ^ (A)>^i)> there are no period 2 circumscribing
polygons (see Fig. 5). The complexity of f2 prevents us from obtaining an analytic
proof of this conjeeture.

y x

0.7"

0.6

0.5-

0.4-

0.3--

0.2

0.1

0.2 0.4 0.6 0.8

Fig 5 (n 8, £0 * 0 632, £x 0 707) Graphs of f2 for £ 37, 47, 57, 67, 77, 87 The steeper graphs

correspond to larger values of £

Proof of Theorem 2 Smce h(0) =f2(0) - 0, a zero <p > 0 of h other than ß corresponds
to a non-regular polygon P of penod 2 as long as f((p) > 0. By the definition of ß,

*) £\ can be interpreted geometncally as A,Q, where Q is defined in Fig 2 Also a simple check venfies
that £q < £x Moreover, both {A)(")} and {^i(«)} are decreasing sequences which converge to one-half,

and*! -£0 0(n~2)
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h(ß) 0. Moreover, by Lemma 4, h'(ß) > 0. Therefore, if h(0) > 0 then h will have

at least one zero in the interval (0,ß) (by the intermediate value theorem). However,
h(0) =f(p), p 27r/n, so h(0) > 0 is equivalent to tanp > ^sinp/(l-^cosp). But this
inequality holds if (and only if) £ < £\. (Note also that f((p)>0 since ZPi is abundant,
where 0= IA2AiP{.)

Remark 3. By examining plots of the function f2, we are led to conjeeture that as

£ passes through £o, the iteration goes through a period-doubling bifurcation (see [1],
pp.158-159 for a discussion of period-doubling bifurcation). This is illustrated in Fig. 6.

tx

Fig. 6 (n 8) The dotted regulär arc represents the vertices of regulär polygons for 0 < £ < 1; the other

curve consists of the two positions (for various £) of vertices of period-two polygons, one on each

side of the regulär arc. The bifurcation occurs at the intersection of the two curves.

Fig. 7a gives a nonregular hexagon (corresponding to an £ near £q) and the regulär
hexagon (corresponding to £0) from which the nonregular hexagon bifurcates. On the

other hand, as £ increases to l\ 1, the non-regular hexagon approaches an equilateral
triangle. This is illustrated in Fig. 7b. In general, the non-regular 2m -gon approaches a

regulär m-gon as £ increases to l\.

Fig. 7a) Fig. 7b)
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Theorem 3 There are no non-regular n-gons, n > 6, with period greater than two

Proof This is equivalent to there being no orbits of / of penod greater than 2 which are
contained in the interval (0,p), p 2ir/n, n > 6. Since a decreasing function cannot
have a point with period greater than 2, it suffices to show that for 0 < £ < 1 / is

decreasing on the subset of (0, p) where / > 0. In view of Eq. (4) f'(0) < 0 if £ < cos 0.

By the first part of Theorem 1 we have n > 8, so p < n/4. If £ < 1 / y/2 then f'(0) < 0

on(0,p).

Consider the case l/\/2 < £ < 1. By the proof of Theorem 2, f(p) < 0 if £{ < £ < 1. But
£i (2cosp)~l < (2COS7T/4)"1 l/\/2 for n > 8, so f(p) < 0 in this case. However,

/ is concave up on (0, p) since

f"(0):
sm0(£-£3)

(l-2^cos6> + ^2)2

is positive for 0 < 0 < tt. Thus, in this case, the concavity of / and the fact that /(p) < 0

imply that / is decreasing on the subinterval of (0,p) on which / > 0.

Remark 4 The results so far still leave unanswered the question whether there are
nonregular pentagons and non-regular hexagons of penod 6. (Non-regular hexagons of penod
3 are precluded smce, by Lemma 2, deficient and abundant angles must alternate.) By
examimng plots of the function / and its iterates we have concluded that there are
nonregular pentagons (Fig. 8) but no non-regular hexagons of penod 6 (Fig. 9). Indeed, there

seems to be a ränge of £ for each value of which there are two non-regular pentagons.

1 2-

0 6'

0 4

0 2

y nx)

Vi
y f(x)

02 04 06 08 1 12

b)

Fig 8 (n 5) Graphs of / and f5 for £ 946 Note that f5 has eleven fixed points so there are two
non-regular pentagons for this value of £
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0 6-

0 4

0 2-

y F(x)

y f(x)

0.2 0.4 0.6 0.

0.6

y P(x)

0.2
y fix)

YA
0 2 0.4 0.6 0.

Fig. 9 (« 6) Graphs of / and /6 for (a) / 77 and (b) l 86.
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