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The Magic World of Geometry —
II. Geometry and Algebra of Braids.

Vagn Lundsgaard Hansen

Vagn Lundsgaard Hansen received his M.Sc. in mathematics and physics from the
University of Aarhus, Denmark in 1966 and his Ph.D. in mathematics from the
University of Warwick, England in 1972. Since 1980 he is professor of mathematics
at The Technical University of Denmark. He has published research papers in topo-
logy, geometry and global analysis, and the books Braids and Coverings (1989) and
Geometry in Nature (1993). Also, he was the editor of the Collected Mathematical
Papers of Jakob Nielsen (1986). He enjoys philosophical discussions, music and
family life.

There is interesting mathematics even in the most common objects of daily life. In the
second article of this series I shall show how geometry and algebra play together in the
mathematical theory of braids.

Braids are among the oldest inventions of mankind. They are used for practical purposes
to make rope, and for decorations in weaving patterns and hairstyles, etc. As mathe-

Knoten und — etwas allgemeiner — sogenannte Zopfe gehodren offensichtlich zu den
einfachsten dreidimensionalen geometrischen Gebilden, die es gibt. Gerade aus diesem
Grunde fordern sie die Mathematik zu einer abstrakten Behandlung heraus: Die Mathe-
matik sollte eigentlich ein Verfahren liefern kbnnen, welches die Frage beantwortet, ob
sich ein gegebener Knoten aufltsen ldsst oder nicht. Erste nennenswerte Fortschritte in
diesem Problem wurden um 1930 von LW, Alexander und von E. Artin erzielt. Dabei
' spielte die abstrakte Gruppentheorie eine zentrale Rolle, Auf diese Artinsche Zopftheo-
rie geht V.L. Hansen im vorliegenden Beitrag, dem zweiten in der Reihe The magic
world of geometry, niher ein. — Nach vielen Jahren mit nur kieinen Fortschritten hat
das Gebiet der Knotentheorie neuerdings wieder stark an Interesse und Aufmerksam-
keit gewonnen. Dies ist vomehmlich auf die 1984 erfolgte Entdeckung einer neuen
Knoten-Invarianten durch Vaughan FR. Jones zurlickzufiibren. Die Theorie hat seither
eine grosse Anzahl von neuen Anwendungen innerhalb und ausserhalb der Mathematik
gefunden. Das oben erwiihnte Problem alierdings ist trotz diesen Fortschritten immer
noch offen, auch wenn man seiner Losung nun sehr nahe zu sein scheint. ust
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Fig. 1 A geometric braid

matical objects they were introduced by the German mathematician Emil Artin (1898
1962) in a paper from 1925, although the idea was already implicit in a paper of Hurwitz
from 1891.

I shall give here a short introduction to the theory of braids, since these geometrical
objects have recently been of central importance in several major developments in math-
ematics. Braids appear in many mathematical subjects: Topology (links, covering spaces,
fixed point theory), Operator Algebras and Dynamical Systems (knotted orbits) to men-
tion a few examples. There are known applications in Physics (topological quantum num-
bers, statistical mechanics), Chemistry (benzene rings) and Biology (DNA-molecules).

In the third paper of this series, “The Dirac String Problem” [El. Math. 49 (4)] I shall
give an application of braids in connection with a problem from Physics, but here I shall
concentrate on the algebraic structure connected with these geometrical objects.

Basically, a braid is a system of intertwining strings. Two braids with the same number
of strings can be combined to form another braid by attaching one of the ends of the
first braid to one of the ends of the second braid. Thereby one can do calculations with
braids in much the same way as with positive real numbers being multiplied together.
We shall now make all this precise.

Consider two fixed horizontal planes in 3-space. We think of these planes respectively

as the upper and the lower plane. Mark n different points P;,...,P, on a line in the
upper plane and project them orthogonally onto the lower plane to the points Pj, ..., P,;
cf. Figure 1. Furthermore, let 7 be a permutation of the numbers {1,...,n}.

A (geometric) braid (3 on n strings and with permutation T is a system of n strings in
the space between the upper and the lower plane that connects the points P; in the upper
plane with the points P’ (i) in the lower plane, such that:

(i) Each string intersects each of the intermediate parallel planes between the upper and
the lower plane exactly once.
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Fig. 2 Projection of braid

(i1) The n strings intersect each intermediate parallel plane between the upper and the
lower plane in exactly n different points.

We shall also refer to 3 as an n-braid. As indicated in Figure 1, we think of a braid as
hanging downwards.

To get a useful mathematical notion we have to define a notion of equivalence of braids.
There are several ways in which to express the equivalence. In the definition that appeals
most to the intuitive ideas, two braids on 7 strings are said to be equivalent, or to be the
same braid, if they can be deformed into one another by a continuous deformation in
3-space keeping the regions above the upper plane and below the lower plane pointwise
fixed. Henceforth, we shall not distinguish between the equivalence class of a braid and
the braid itself.

After an arbitrarily small deformation, we can (and do) assume that a braid ( consists
of polygonal strings, and that the orthogonal projections of the strings onto the plane in
3-space that contains the endpoints Py, ..., P, P{,...,P, of the braid have transversal
crossings. By this projection we get a standard picture of the braid § as shown in Figure 2.
We also remark that (up to equivalence) we can assume that crossings of strings occur
at different levels; over- and undercrossings must be indicated.

In Figure 2 we have indicated how a braid can be resolved into elementary braids in
which all strings, except for a neighbouring pair of strings, go right through from the
upper to the lower plane, and the neighbouring pair of strings crosses each other exactly
once.

For 1 <i < n— 1, we denote by o; the elementary geometric n-braid in which the ith
string overcrosses the (i + 1)th string exactly once and all other strings go right through
from the upper to the lower plane. See Figure 3.

Let B(n) denote the set of all equivalence classes of geometric n-braids. As we shall show
now this set can be equipped with a product operation which gives it the mathematical
structure of a group. A well known example of a group is the set of positive real numbers
equipped with the usual product.
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Fig. 4 Product of braids

Fig. 5

Let 8 and (3, be geometric n-braids. Then we define the product of (3, and [3,, denoted
B - B2, in the following way: First hang the braid (3, under the braid (3; by attaching
the lower plane of () to the upper plane of 3,. Then remove the plane along which the
braids (J; and (3, are attached to each other. Now squeeze the resulting system of strings
to lie between the upper and the lower plane, and we have the braid (3, - 3,. See Figure 4.

If we replace the braids (; and (3, by equivalent braids 8] and (3}, then it is clear that
the product braids 3, - 3, and 3] - 3; are equivalent, since deformations of 3, to 3] and
B, to (3, can be made in the respective layers before we squeeze and form the product.
The product of braids is therefore well defined on equivalence classes of n-braids and
thus induces a product in B(n).

The trivial n-braid e is the n-braid in which all strings go right through from the upper
to the lower plane. In Figure 5 we show the projection of €. It is clear, that € is a neutral
element for the product in B(n), i.e. the product braids 3 - € and € - 3 are equivalent to
B for every n-braid 3.

We define the inverse braid 3~ of the braid 3 as the mirror image of 3 with respect
to a horizontal plane between the upper and the lower plane. The projections of 3 and
B~ are shown in Figure 6.
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It is not difficult to see that the equivalence class of 3! is well defined from the
equivalence class of 3, and that the product braids - 37! and 3~! - 3 are equivalent to
the trivial braid e. The equivalence class of 37! is therefore the inverse element to the
equivalence class of 3 in B(n).

For the elementary n-braid o;, 1 <i < n—1, we get the inverse braid o;” ! by substituting
in the standard projection the overcrossing of the (i + 1)th string by the ith string with
an undercrossing. See Figure 7.

It is not difficult to prove that if B(n) is equipped with the above product we get a group
with the trivial n-braid as neutral element and inverse elements as mentioned. This group
is called the (Artin) braid group.

As it has already been indicated in Figure 2, it is intuitivly clear that the equivalence
class of an arbitrary n-braid can be written as a product of the elementary n-braids o,
1 <1 < n-—1, and their inverse elements. From a group theoretical point of view, this
means that the elementary n-braids o4, ...,0,— generate the group B(n).

There are also group theoretical relations among the elements in B(n). First we remark
that the following relation holds:

1 oicoj=0j-0; for |i—j|>2, 1<i,j<n-1.
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The relation follows immediately, since the pair consisting of the ith and the (i + 1)th
string does not interfere with the pair consisting of the jth and the (j + 1)th string with
the given restrictions on i and j. In Figure 8 we illustrate the relation.

As illustrated in Figure 9, we also have the following relation in B(n):
(2) o0i-0ip1:0i=0i41-0i 04 for 1<i<n-2.

Already in Artin’s first paper on braid groups from 1925 a proof was given that an
arbitrary relation among the elements in B(n) can be deduced from relations of the
types (1) and (2). This is actually quite technical to prove and we cannot indicate a
proof here.

In group theory one says that the braid group B(n) has a presentation with generators
01,...,04—1 and generating relations

(1 gj+0j=0j0j for |i—j122, 1<i,j<n-1

(2) O;i0jy] *0i =0i41 " 0i " Ojy| for 1Si_<_1’l——2.
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