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Partitioning Balls into Topologically Equivalent Pieces

Christian Richter

Christian Richter wurde 1969 in Jena geboren. Nach dem Abitur studierte er Ma-
thematik an der Friedrich-Schiller-Universitit in Jena. Gegenwirtig ist er wissen-
schaftlicher Assistent am dortigen mathematischen Institut und beschaftigt sich in
Vorbereitung auf eine Habilitation mit Zerlegungs- und Uberdeckungsproblemen me-
trischer Rdume und mit approximationstheoretischen Anwendungen. In seiner Frei-
zeit unternimmt er gerne Wanderungen und findet Entspannung beim Musikhoren.

1 Introduction

In 1949 B. L. van der Waerden asked for a proof for the non-existence of a disjoint
decomposition B = A; U A, of a closed ball (circle) in the Euclidean plane E? into
two congruent pieces A; and A, (cf. [Wae]). This problem found, beside its solution in
the same issue of “Elemente der Mathematik”, many generalizations (cf. [Wal], [Wa2],
[He], [Edel], [Ede2]. [E/J/T], [Ri]). We use the most general notation from [Wal]: Let
% be a group acting on a set X. A subset Y C X is called n-divisible w.r.t. G if Y may
be partitioned into 7 pieces which are pairwise congruent via 4.
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In the Euclidean space E¢ it is the natural problem to discuss the n-divisibility of sets
w.rt. the group B¢ of all isometries of E¢. In the paper [He] it is shown that every
closed, bounded and convex set in E? is not 2-divisible w.r.t. %¢. Morcover it is proved
that closed intervals are not #n-divisible w.r.t. B! forall n € {2,3,4,...}. E. Hertel asks
for the largest group of transformations of E¢ for which these results can be generalized.

Of course, half-open intervals [2,b) C E! are n-divisible w.r.t. translations. Similarly,
the small manipulation of removing its center makes a circle in the Euclidean plane
n-divisible w.r.t. rotations. This shows that “small” topological changes can change the
property of n-divisibility of sets. On that account it becomes interesting to consider the
n-divisibility of bounded convex sets w.rt. the group J¢ of all homeomorphisms of E¢
onto itself. It is obviously sufficient to restrict the considerations to balls, which represent
the topological type of bounded convex sets. We call a set B C E? a (general) ball of
radius ¥ > 0 centered in x, € E? if

{xeE :|x—x| <7} CB C {xecE:|x—xof <7} .

2 Partitioning closed balls

Before we discuss the n-divisibility of closed balls in E¢, we ask for partitions into 1
pairwise homeomorphic topological subspaces. This property of the partition sets is more
general than the pairwise congruence via ¢, since a homeomorphic bijection between
two subsets of E¢ can not be extended to a transformation from J¢ in general.

Theorem 1 Let B be a closed ball in E* (d > 1) and let n > 2. Then there exists a
disjoint decomposition of B into n pairwise homeomorphic topological subspaces of E*.

Proof. The cases (d,n) # (1,2) will be discussed in the proof of the following Theo-
rem 2.
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Fig. 1

If d = 1 and n = 2 we assume that B = [—1, 1] without loss of generality (cf. Fig. 1).
We consider the decomposition B = S U T where

S={-1}U D S with S = { [-1 + 51, +27k) if k is even,
k=0

[1—27F 12"k if k is odd
and

T={}ulJTx  with

{ [1—27F 1 —2-(+D) if k is even,
Ti =
k=0

[—1++2 KD —1 4275} if k is odd.
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A homeomorphism ¢ from S onto T can be obtained as follows: We define the restriction
©ls, of ¢ to the interval Sy, k € {0,1,2,...}, to be the translation of Sy onto Ty and,
of course, ¢(—1) = 1. The continuity of ¢ in a point xo € S\ {—1}, say x¢ € Sg,,
is implied by the existence of a neighbourhood U(x,) in the topological space S such
that U(xo) € Sk,. Hence ¢y« is a restriction of a translation and, consequently, ¢

continuous in Xo. If x; = —1 we observe, that all points x € S with [|x — x| <27, ie.
x € {—1}UlJ Sz. are mapped into {I}UU’ T ie. |lp(x)—p(xo)| = |le(x)—1| <272,

I=i I=i

The continuity of ¢! can analogously be checked. This completes the proof. (I

The investigation of the n-divisibility w.r.t. 7¢ requires several steps. The first proposition
shows that this n-divisibility is strictly harder than the partition property considered in
Theorem 1. (Proposition 1 is proved in a more general context in [Ri]. In the present
paper we give an elementary proof.)

Proposition 1 Closed balls of E' are not 2-divisible w.rt. I'.

Proof. Without loss of generality we consider the ball B = [0, 1]. We assume the contrary,
i.e. there exist two disjoint sets S and T and a homeomorphism 7 € I such that

0,1]=SUT, 7(S)=T and 0€S. (1)

Fact 1: 7 has no fixed point xo = 7(Xo) in [0,1].
Such a point would belong to both the sets S and T, since 7(S) = T, in contradiction
to the disjointness of S and T.

Fact 2: 7 is either strictly increasing or strictly decreasing.
This is simply implied by the injectivity of 7 and Cauchy’s intermediate value theorem.

Case 1: 7 is strictly increasing.
We prove the following statement by induction w.r.t. i:

Fact 3: Let i € {0,1,2,...}. Then

(o) 0) <) <)

(%) [72(0),1] = (S N [72(0),1]) U (T N [«72(0),1])
(%) (SN [0 ]) T N [7%72(0),1] and

(@) 20) € 57 [7(0),1]

We start with i = 0. The first inequality from (ayp) is easily seen, since
m(0) € 7(S) =T =[0,1]\ S C (0,1]

and thus 7°(0) = 0 < 7'(0). Application of 7 to this inequality yields 7'(0) < 72(0),
which completes the verification of (o). Equation (5,) is trivial in accordance with (1).
Moreover we have

min(T) = min(7(S)) = 7(min(S)) = 7(0) ,
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hence
[0,7(0)) C S

and, by application of 7,
[7’(0),7’2(0)) CT.

These inclusions imply that
SN 0,72(0)) = [0,7(0)) and TN [0,72(0)) = [7(0),7%(0)) . (2)
We obtain () by

(SN [r3(0),1]) =7 (S\ [0,7(0)))
=7(5\[0,7(0))) oy (2)
=T\ [7(0),7°(0))
=T\ [0,7%(0)) by (2)
=Tn [7%(0),1]

Finally, we have 72(0) € [0, 1], since 72(0) belongs to the closure of T in accordance
with the second part of (2). If 72(0) would belong to T we would obtain

7(0) =771 (r*0)) e T (T) =S
in contradiction to (2). This shows the inclusion 72(0) € S and completes the verification
of ((So)
The step from i —1 to i, i > 1, can similarly be done. We presuppose (5i—1), (vi—1),
and (6;_,) instead of (1), i.e. we replace [0, 1] by [7%(0),1]. S by SN [7%(0),1]. T by
T N [7%(0),1]. and 0 by 7%(0). Then we infer (), (3;). (v). and (&;) by the same
arguments as above. This completes the proof of Fact 3.

[ 5 y T vy 8 y Ty S yTy vy yyy, ]
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70(0)=0 71(0) 72(0) 73(0) 7%(0) 75(0) 76(0) lim 78(0) 1
T— 00

Fig. 2

According to Fact 3 we have an increasing sequence (Ti(O))ZO in [0, 1] (cf. Fig. 2). The
limit x, € [0,1] of this sequence is a fixed point of 7, since
T@@:T(mnfm»:1m¢HWn:m.
1—00 1—0o0
Hence we obtained a contradiction to Fact 1. This closes the considerations of the first
case.

Case 2: 7 is strictly decreasing.

We have 7(0) € 7(S) C [0,1]. According to Fact 1 we obtain 0 < 7(0) < 1. Moreover
we have 7(1) < 7(0) < 1. Consequently, 7(0) —id(0) > 0 and 7(1) —id(1) < 0. Hence
there exists an x, € (0, 1) with 7(x,) —x, = 0 in contradiction to Fact 1. This completes
the proof of Proposition 1. O
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Proposition 2 Every closed ball in E' is n-divisible w.rt. T' for all integers n ¢
{3,4,5,...}.

Proof. We consider the ball B = [0, 7], which can be decomposed into the # intervals
[0,1),[1,2),...,[n—2,n—1),[n—1,n] (cf. Fig. 3). The half-open intervals [j — 1, ),
1 <j <n—1, possess a partition

[j~17j):S]'UT]' with

o0

Si={i-soU{i-a+ 0,

k=1

(G

Ti=U{ji-3+ =072 h) .

k=1

The remaining interval [# — 1, %] can be decomposed into

m—1,n=5UT, with

Su={n= Ul (fn =4+ [270, 20 2 ]

Ty = ({n _ %} + (_2—2k7 _272k71) U (242k717272k)) .

s

k=1

We consider the following partition:

TS, U ifj=n.

All the sets Ay, Az, ..., Ay,—1 and the reflection —A, of A, have the following topo-
logical structure:

- (Qe)oon(be)(Uo) - (0e):

The subsets C; form an increasing sequence of closed and bounded intervals of positive
length which tends to a point ¢ € A. (Cv[)?il is a decreasing sequence of closed and
bounded intervals of positive length tending to ¢ from above. Similarly, the sets O; are
open and bounded intervals of positive length which accumulate in 0 ¢ A from below.
The sequence (éi)?il consists of open and bounded intervals of positive length and tends
to o from above. All the intervals éi, Ci, (51', and éi are pairwise separated by intervals
of positive length. Moreover the closed set consisting of {c} and the closed intervals is

separated by an interval from the open set formed by the open intervals, too.
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For any two given sets A and A’ of that type there exists a strictly increasing homeo-
morphism 7 € I such that 7(A) = A’. One can define 7 piecewise lincarly where C,
is mapped onto C{, ¢, onto Cg, ...contoc, ... Conto c“g, ¢, onto C!, O, onto O{,
O, onto Oé, ..,oonto00, ..., O, onto Cv)é, and O, onto (5{. This shows, that the sets
A;, 1 <i < n, are pairwise congruent via 7', and completes the proof of Proposition 2.

O

Let us remark that the above construction does not apply to the case n = 2, since the two
sets S, and T; would not be separated by an interval. This would change the topological
structure of A, = S, UT;.

Proposition 3 Every closed ball in B? is 2-divisible w.rt. I

Proof. We consider the thomb B = {(x,y) € E* : [x| < 1,|y| < (1 — |x|)} instead of
a ball (cf. Fig. 4). B admits the decomposition B = S U T where

S={(-1,0yulJs ad T={(L0}uUlJTx  wih
k=0 k=0
- {{(XJ/) €Bixe[-1 4270 112 k) ifkiseven
{(x,y) eB:xe[1-27%1-2-(+D)} if k is odd,
Tk_{{(xyy)eB:xe[l—z’ﬂl—z“‘“))} if k is even,
{(,y)eB:xe[-14+2-* 14275} if k is odd.

(This partition is closely related to that given in the proof of Theorem 1.)

We define a homeomorphism 7 € J2 as a product 7 = ¢ o o where o is the reflection
on the vertical axis, i.c. o(x,y) = (—x,y). The structure of ¢ is more difficult: For all

the sets o(Sy ), which are of the form o(Sx) = {(x,y) € B : x € (ax, bi]}, we consider
a covering square Ry = {ak — ka;“hbk - b"%“"} X [—M7 M] The closed
squares Ry are mutually separated. The restriction ¢|g, to Ry is a homeomorphism of

Ry onto itself which leaves the boundary bd(Ry ) pointwise fixed and maps o (Sk) onto
o0
Tx. Besides that, we demand the remaining points (x,y) ¢ |J R to be fixed under . It

k=0
is easily seen that the piecewise definitions of ¢ fit together and form a homeomorphism
pe T2
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Consequently, we obtain 7 = p o o € J2 such that

r(S)=ypoo ({(—LO)}U U sk)

k=0

= o(o({(-1,0N) u | J w0 (S)

k=0

={@opuJT = T.

k=0
This completes the verification of Proposition 3. O

Proposition 4 Let d € {2,3,4,...} and n € {2,3,4,...} such that a closed ball in
EY1 is n-divisible w.r.t. T4~ Then every closed ball in B is n-divisible w.rt. J%.

Proof. According to the assumption there exist a closed ball B*~! € E4~!, a decompo-
sition B*! = § 1 U ST UL USI! of B*!, and mappings 77" from J¢! such
that 7' ($971) = S#7', 1 < i < n. Let B be a closed ball in E?. We assume that
B? = B! x [0, 1] without loss of generality. Of course, B¢ admits the decomposition
B = (S9! x [0,1]) U (S¢7! x [0,1]) U... U (S x [0, 1]). Moreover, if the identity
on E! is denoted by ¢, then the mappings 7¢ = 7! x ¢ : E¢ — E¢, 1 <i < n, belong
to % and fulfil 7¢ (S¢" x [0,1]) = S¢~! x [0, 1]. This shows the n-divisibility of B*
wrt J4 O
Propositions 1-4 amount to the following theorem:

Theorem 2 Letd € {1,2,3,...}, n € {2,3,4,...}, and let B be a closed ball in E.
Then B is n-divisible w.r.t. T% if and only if (d,n) # (1,2). O

3 Partitioning non-closed balls

Proposition 5 Let S be a subset of E?, xo € bd(S) \' S a point such that S U {xo} is
star-shaped w.rt. Xo, n € {2,3,4,...}, and 6 the dilatation with center X, and factor
¢ > 1. Then there exists a decomposition

S=5US5U...US5,

of S such that ’
S;=671(S)) for i=1,2,...,n.

Proof: Tt is sufficient to show the assertion for all intersections
SH=SnH

of S with open halflines H starting in x,, since § maps H onto itself. We assume that
SHCE!' xy =0, and H = (0,00) without loss of generality. S is a bounded or an
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unbounded interval, i.e. S¥ = 0, SY = (0,b), S" = (0,b], or S = (0,00). If S¥ is
empty then there is nothing to show. Otherwise we consider the decomposition

s =sltysity.. ust

with _
U [b . an+i717b . C”k‘H) if SH = (07 b) 5
k=—o0
st { U e e st o),
k:[j (crh+i=1 gnk+i] if SH = (0,00) .

A simple calculation shows that
S = 1. sff = 61 (sf)

fori=1,2,...,n and completes the proof. O

Of course, for every strictly convex set S C E?, which is not closed, there exists a point
Xo € bd(S) \ S as assumed in Proposition 5. Hence we obtain:

Corollary Every non-closed strictly convex set in B is n-divisible w.r.t. the group #*
of all similarities of B forn =2,3,4,. ... O

In the context of the present paper we formulate the following more special implication
concerning the divisibility of non-closed balls w.r.t. I7¢:

Theorem 3 Lerd € {1,2,3,...}, n € {2,3,4,...}, and let B be a non-closed ball in
E?. Then B is n-divisible w.rt. J%. (Il

Let us close this paper with a remark on the structure of the decompositions of closed or
open balls in E! considered in the proofs of Proposition 2 and Proposition 5. The balls
are partitioned into subsets mutually congruent via 9, any of the subsets consisting of
countably many connected components. The partitions given in this paper are optimal
in the following sense:

Proposition 6 Let B=S5,US,U...US, be a decomposition of a closed or open ball
B € E! into n > 2 subsets which are pairwise congruent via I'. Then all the sets S;
consist of infinitely many connected components.

Proof. We assume the contrary, i.e. the boundaries bd(S;) of the subsets S; w.rt. the
topology of E! are finite. Then the interiors of the sets S; consist of k open intervals,
where k > 1 does not depend on i according to the congruence of the sets S; via J'.
Hence the ball B is decomposed into 7k open intervals — the components of int(S;),
1 <i < n, - and those points of the boundaries of the sets S; which belong to B. The
nk intervals are separated by nk — 1 inner points of B. Consequently,

n
‘ _ [ nk+1 if Bis aclosed interval,
card (U (bd(sl) n B)> - {nk — 1 if B is an open interval. (3)

i=l1
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On the other hand we have

(bd(Si) ﬁB) — LnJ (bd(Si) n 51') 5

1 =1

-

i

I

where the right union is disjoint. All the sets bd(S;) N'S;, 1 < i < n, are of the same
cardinality [, since the sets S; are congruent via J'. Thus we obtain

card O(bd(Si)ﬂB) =nl.

i=1
This contradiction to formula (3) proves Proposition 6. O

The author thanks E. Hertel for confronting him with the problem and for encouraging
him to write this paper.
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