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1 Introduction
The standard Isoperimetric Theorem for polygons with a fixed set of edge lengths is as

follows (cf. [2]):

Theorem 0 Let S be a Unite multiset ofpositive values. Then among all polygons with
edge lengths that comprise the elements of S, those that are inscribed in a circle have
the greatest area.

Of course, Theorem 0 includes the implicit restriction that the largest value in S does not
exceed the sum of the other values, since no polygon could have such a longest edge.

Now suppose that we are given a collection of line segments with fixed lengths, and wish
to arrange them to form an open convex path whose convex hull has the greatest possible
area. The solution to this optimization problem is also well-known. The answer is to place
the segments consecutively so that they are inscribed in a semicircle of suitable minimum
radius. The resulting path, and the polygon that is formed by including the diameter
of the enclosing semicircle solve this area maximization problem. This fact follows

Bekanntlich schlicssl dor Kreis bei vorgelegtem Umfang die grossie Fläche ein. Der
Beweis dieser und analoger Problemstellungen wird mit Hilfe isoperimetrischer
Ungleichungen geführt. Grundkenntnisse zu dieser Thematik waren offenbar bereits

im Altertum vorhanden. So wird in Vcrgils Acncis über die Gründerin Karthagos.
Königin Dido. berichtet (erster Gesang. Verse 367/368): "Dort erstanden sie Land.

von dem Handel einst Byrsa geheissen. was mit der Haut des Stiers sie cinzuschlics-

sen vermochten". Im vorliegenden [Beitrag führt uns der Amor mit Hilfe elementarer
Methoden zur Lösung eine;, isoperimetrischen Problems, bei dem nicht nur die Länge
sondern auch die geometrische Form des Umfangs vorgegeben ist. jk
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from the Reflection Principle and Theorem 0. Accordingly, we define the following area
maximization function.

Definition 1 Let S be a finite multiset of positive numbers. Let DArea(S) equal the

area of such a maximally sized polygon formed from edges with the lengths in S, plus
one extra free edge as described above.

In 1989, A. and K. Bezdek formulated a new but related area maximization problem as

the following Dido-type theorem [1].

Theorem 1 Let S be a physical arrangement of segments in K2 thatjs pointwise
connected, and let the multiset S comprise the lengths of the segments in S. Then

Area(ConvHull(S)) < DArea(S).

To be precise^Bezdek and Bezdek formulated this statement as a conjecture, and proved
the result if S, when considered as a graph with vertices and edges, is connected [1].
Now, their formulation does allow edges to cross each other, but requires that the graph
connectivity, which is a consequence of edges sharing vertices as endpoints, must comprise

a single component. They conjectured that this restriction should be unnecessary.

2 The inequalities
We show that their conjecture is indeed correct. We also give two generalizations of
their theorem that, we believe, enable this result to be proven quite easily.

Definition 2 Let S (§\, s2,..., sn) be a sequence of n physically placed segments in
K2. We say that S is weakly connected if, for / 1,2,..., n - 1:

Sj+\ n ConvHull{s\,S2,... ,sj) =/= 0.

This definition immediately suggests the following theorem.

Theorem 2 Let S be a weakly connected sequence of segments in K2, and let the

multiset S comprise the lengths of the segments in S. Then

Area(ConvHull(S)) < DArea(S).

Obviously, Theorem 2 implies Theorem 1. With one intermediate step, the chain of
reasonings becomes a matter of a few elementary observations.

Definition 3 We say that a sequence of physically placed segments (s1;s2,... ,sn) is

optimally sequenced if the following hold.

1) The sequence defines a connected path with the same natural ordering of edges as

given by the sequence.

2) The path, when augmented by an edge that connects its first and last vertices,
defines the boundary of a convex region.

3) The rotation of edges along the path is less than tt. Formally, tt exceeds the sum
of the angles that are supplementary to the interior angles of the path.
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This definition will be used in Theorem 3 to show that the best way to translate edges
is to arrange them so that they are sorted by slope and connected to form a path.

Theorem 3 Let S (s"i, s2,..., s„) be a weakly connected sequence of segments in K2.

Let T (t\, £2, • • • j tn) be optimally sequenced, and suppose that these edges comprise

a reordering and translation of the segments in S as necessary, with rotations precluded.
Then

^ ^
Area{ConvHull{S)) < Area{ConvHull{T)).

Now, the standard Isoperimetric Theorem for a fixed set of segment lengths and a free

line, as noted in the remarks following Theorem 0, shows that Area(ConvHull(T)) <
DArea(T), where T is the multiset comprising the lengths of the segments in T. Since
this fact gives Theorem 2, we need only prove Theorem 3.

Proof of Theorem 3. Let the vertices of the path defined by T be p0, p\,..., pn, so that
U Pi-\Pi- Let 0; be the vector that points from p,_i to p;. For convenience, let the

rotational sense of T be positive, so that the cross product formulation we use will give
positive values. Let s) be a vector rooted at the origin that is parallel and congruent to
the segment sz, for i 1,..., n.

Let Rj ConvHull(s\,s2,... ,sj-\). Suppose, for the moment, that s; has just an
endpoint that lies within Rj. Then adjoining s; to Rj and taking the convex hull effectively
adjoins a triangle to Rj where the base lies within Rj and the opposing vertex is the

endpoint of s; that is exterior to Rj. The increase in area is bounded by the area of the

triangle, which, in turn, is half the cross product of s'y and a vector that corresponds to
the base.

Let cfj be a located vector that lies entirely within the region Rj and that, among all such

vectors, yields a maximum value for s'y x iy. Our reasoning shows that Area(R/+1) -
Area(Rj) < \sj x dj, subject to our supposition about §j nRy. To see that this inequality
must hold whenever R; nsy ^ 0 and Rj is convex, observe that if Sj has two subsegments
that exit Rj, we can apply the above reasoning to each subsegment in turn. Since the two
pieces are parallel, the same dj can be used in the area estimate for each augmentation.

Summing these area differences gives

Area(ConvHull(S)) < -
i

Evidently, we will get a term that is at least as large as Sj x iy if we replace iy in (1)

by the sum J2 UijSi, where «fj sign(s*y x s;).
i=\

Substituting gives

~ 1 " il
Area(ConvHull(S)) < -

f=l
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Averaging these two expressions shows that

Area(ConvHull(S)) < - J^^i x

where e-} J2 wi,jSi, and wi,j sign(s) x s;).

But as the following shows, this formula is satisfied with equality by the T vectors:

Area(ConvHull(T)) ^

i=\

i=\ f=i+\

i=\
1 "

i=\

i=\ ;=1 j=l+\

However, since the vectors are sorted by incline, and cannot have directions that differ
by as much as n, the projection of —Ûj, for ; < i and &j, for ; > i onto a unit
perpendicular to ^ all point in the same direction. Consequently, if se corresponds to 0f,

f-l n
then ëi (- J2 &} + J2 &}) provided st> is parallel to 0;. If the vectors are antiparallel,

;=1 ;'=f+i
f-l n

then et (J2 &; — J2 ^/)- in view °f inequality (2), Theorem 3 now follows. D
;=1 ;=f+i
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