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Some relations concerning triangles and bicentric quadri-
laterals in connection with Poncelet’s closure theorem
when conics are circles not one inside of the other

Mirko Radi¢

M. Radi¢ studied mathematics at the University of Zagreb, where he was primarily
trained as an algebraist. Presently, he is professor emeritus at the University of
Rijeka, Croatia. There he was lecturing for more than fourty years. He is still active
and working on problems concerning polygons.

1 Introduction
A polygon which is both chordal and tangential will be called a bicentric polygon.
The first who was concerned with bicentric polygons was the German mathematician
Nicolaus Fuss (1755-1826), a friend of Leonhard Euler (see [5]). He posed the following
problem (known as Fuss’ problem of the bicentric quadrilateral):
Find the relation between the radii and the line segment joining the centres of the circles
of circumscription and inscription of a bicentric quadrilateral.
He found that

20202 Jo e 1 — P (1.1)

where 7 and p are radii and z is the distance between the centers of the circles of
circumscription and inscription.
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This problem is listed and considered in [4, p. 188] as one of the 100 great problems of
elementary mathematics.

Fuss also found corresponding formulas for bicentric pentagons, hexagons, heptagons
and octagons (Nova Acta Petropol., XII, 1798).

The corresponding formula for triangles is
222 =2fp (12)

and had already been given by Euler.

The very remarkable theorem concerning bicentric polygons is given by the French
mathematician Poncelet (1788-1867). In the formulation of this theorem the so-called
Poncelet traverse will be used. This in short is:

Let C; and C, be two circles in a plane. If from any point on C, we draw a tangent to C;,
extend the tangent line so that it intersects C,, and draw from the point of intersection
a new tangent to C;, extend this tangent similarly to intersect C,, and continue in this
way, we obtain the so-called Poncelet traverse which, when it consists of 7 chords of
the circle C, (circle of circumscription), is called n-sided.

The Poncelet theorem for circles can be expressed as follows:

If on the circle of circumscription there is one point of origin for which the n-
sided Poncelet traverse is closed, then the n-sided traverse will also be closed
Jor any other point of origin on the circle.

Poncelet proved that the analogue holds for conic sections so that the general theorem
reads:

Poncelet’s closure theorem. If an n-sided Poncelet traverse constructed for two given
conic sections is closed for one position of the point of origin, it is closed for any position
of the point of origin.

Although this problem dates back to the nineteenth century, many mathematicians have
been working on a number of problems in connection with it. Many contributions have
been made. Very interesting and useful information about this we found in the references
concerning Poncelet’s closure theorem, particulary in [2], [6] and [8].

In this article we shall restrict ourselves to triangles and bicentric quadrilaterals when
the conics are circles not one inside of the other and where instead of incircles there are
excircles under consideration. In this case for triangles instead of relation (1.2) Euler’s
relation holds:

2> — 12 =Zrp. (1.3)
But Fuss’ relation (1.1) holds in both of these cases. (More about this will be given in
Section 3.)
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B
B,

Fig. 1

2 Some relations concerning triangles which have the same
excircle and same circumcircle
Notation used in this section:

Let r, z and p be any given lengths (positive numbers) such that Euler’s relation (1.3)
holds, and let M and O be points and C; and C; be circles such that

IMO| =z, Ci=M(p), C=O0(r). (2.1)

Then, by Poncelet’s closure theorem, for every point A; on C, there is a triangle A1 A,A3
whose excircle is C; and circumcircle C,. (See Fig. 1, where r =3,z =15, p = %.)

A triangle will be degenerate if one of its vertices belongs to the set {P;, P>, Q1, D2},
where the points Py, P, Q;, Q; are shown in Fig. 2. So, for example, triangle B; B;B;
shown in Fig. 1 is a degenerate one.

Now, let us consider Fig. 3. It is easy to see that
(t1 — ty — t3)p = area of triangle A;A,As, (2.2)

where t; = |A;T;|, i = 1,2,3. Thus, in this case, instead of t, and t3 we must take —t,
and —t3. It is because in this case we must use oriented angles. Namely, if the angle
MA;T; is negatively oriented, then instead of ¢; we must take —#;.
It can be easily seen that for every triangle A;A>A3; whose excircle is Cy, one of
the angles MA;T;, i = 1,2,3, is negatively oriented and the other two positively, or
conversely, one is negatively oriented and the other two positively.

Also, it is easy to see that

lt; + 1] = |AiAi], i=1,2,3,
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Fig. 3

where
t; =t it ZMA;T; is positively oriented,
t;=—t if ZMA;T; is negatively oriented.

Using vertices A1, A,, As instead of Ty, T,, T this can be expressed as follows:
t; =1t it ZMA;A;y is positively oriented,
t; =—t; if ZMA;A;41 is negatively oriented.

Of course, if /MA;A;; is “obtuse” then its supplement is taken.

Remark 1 For simplicity in some of the formulations in this section we shall assume
that the vertices of every triangle A;A>A3 whose excircle is C; and circumcircle C, are
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denoted such that
|A1M| = max{|A M|, |A2M], |AsM|}.

So, for example, triangle A;A»As in Fig. 3 is such. Triangle A;A>A3 in Fig. 1 becomes
such if A; and A, are mutually interchanged.

Using Fig. 2 it can be said that A; € Ple, where Ple NOM = 0. As will be seen,
doing so, nothing essentially will be changed. First, it can be easily proved that

(i’l - tz - t3)p2 = t1t2t3. (23)
Namely, from Fig. 3 we see that
20, =201 + 4, 283 = 2B + p,

from which we get
=B+ B+ B3 = 90°. (24)

Thus, we can write

cot(B + B3) = —tan 3y,
cot 31 — cot B, — cot 33 = cot 51 cot 3, cot 3a,

which can be written as (2.3). Now, we can prove the following theorem.

Theorem 2.1 For every triangle A1A>As which is such as described in Remark 1, the
Jollowing holds:

| —tity + tots — t3t1| =4rp — ,02‘ (25)
Proof. From (2.3) we have
2
Pt —t)
fy = ————=~. 2.6
T THL P (26)

Using the above expression for t3 we get

P+ 8) + 1 — p’hib

— tit taty — tat| = 2.7
| — tits + tats — taty] s+ o (2.7)
Now, we can use the relations
abc
=t —ty—t = — 28
J=ti—ta—t)p, ] - (2.8)

where
J= areaof ABC, a=t—t, b=t +ts, c=1t —ts.
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From
(tl — tz)(tz + t3)(t1 — t3)

t1—t —t =
(1 —ta—t3)p T

and from (2.6) we get
(@ +8)(P* +8)

4rp = 2.9
P it 2 (2.9)
or, subtracting p? from both sides,
2042 | 42 242 2
-+t ) + {5 — ptits
41,_2:P(1 2 12 ) 210
p—p it (2.10)
So, equation (2.7) can be written as (2.5). Theorem 2.1 is proved. O

Corollary 2.1.1 For every triangle A1A A3 whose excircle is Cy1 and circumcircle is
&)
|Erts + Eabs +tat| = drp— o (2.11)

holds, where
=t; if ZMA;T; is positively oriented,

t;
t; = —ti if LMA;T; is negatively oriented.

Proof. The value |t,t, + t,t4 + t4f | does not depend upon numeration of vertices of

a triangle whose excircle is C; and circumcircle is C,. O

Corollary 2.1.2 Let A{AAs and B1B,Bs be any two triangles whose excircles have
equal radii. Then the circumcircles of these triangles have also equal radii iff

1o+ Eots +Eaty| = [1qly + Uslis + Ualiq], (2.12)
where '
|£i +ii+l| = |AiAi+1|7 1= 1>2a3;
|2i +1_'li+l| - |BiBi+1|, Z - 17273'

Proof. 1ff (2.11) holds, then from

|t1ts -+ tats + sty =4rp— p7,
Uy + Lolis + Uslh | = 4119 — pP

it follows that r = 7. ([

Corollary 2.1.3 Let B1B,B3 be the degenerate triangle shown in Fig. 1. Then

t = /22 — (r — p)2.
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Proof. From (2.5), since t, = 0, we get
82 =drp—p°. (2.13)
Now, using Euler’s relation (1.3), we can write

B=2rp+2rp—pP =2 -1 +2rp—p? =22 — (r — p)*. O
For the following use, the length /2% — (¥ — p)? will be denoted by tg, that is
tg = 1/2%> — (r — p)2. (2.14)

See Fig. 2. Let us remark that ty = |P1P>| = |Q1Qz2| = |PiRy| = |Q1Ry] since |P1R| =
22— (r —p)2.

Corollary 2.1.4 For degenerate triangles Py PPy and Q1Q,Qs shown in Fig. 2 we have
IPP,* = |Q1Qaf” = [PiR1| = |QiRo|* = 4rp — p°. (2.15)

Proof. Note that t2 = 4rp — p? holds. O

In the following theorem we shall use the length f3; given by
tam =/ (r+2)?—p% (2.16)

Let us remark that t3; > ¢ for every tangent drawn from C; to C; (see Fig. 4); tp = |PQ,
and [PQ| = /(T + 2)° — 72,

Also, let us remark that t, < t; < tp, where t; = |A;T;| and A;A,A; is a triangle as
noted in Remark 1.

Theorem 2.2 Let t1 be such that
to < <ty (2.17)
Then the lengths of the other two tangents are given by

., 2rpti+ VD

o 21’pt1 — \/5
2 pz e t% -

2.18
o 2.18)

’ 3

where
D =4rpH — (¥ + ) (0°H —4rp> +5*). A
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Proof. The relation (2.9) can be written as
(0° + )85 —Arptity + p*H —4rp’ +p* =0,
from which, solving for t,, we get
(t ) - Zi’ptl + \/5
210 = 2+
Of course, (t;), = t3 since
1+ L] = |AiThl, |t +1s] = |AiT5].
Thus, it remains to prove that D > 0 for every ¢; such that (2.17) holds. For this purpose
it is enough to prove that D = 0 for t; = tp; and t; = —ty, that is for 3 = 3,. The

proof is as follows: Putting #3, instead of #; in D/p? and using Euler’s relation (1.3) we
can write

D/p* =4r3(r +2)? —4r?p* — (r + 2)* + 4rp(r + 2)?
=4 (r+2)2 — (22— 1) — (r+2)* +4rp(r + 2)?
=(r+2?@r —z-r? -+ +2E-1) =(r+2)?* 0=0.
Theorem 2.2 is proved. O
Although #; is not given explicitly as are {, and f3, but by condition 5 < f; < tyy, it is
easy to check that for {1, ¢, t3 given by (2.17) and (2.18) in the end we get
(4rp — p*)(P* +17)
Pt

| — titr + tats — tat| = = drp— p*.
Example 1 Tetr=3,z2=5,p= %. Then
ta A~ 7.542472333, to ~ 4.988876516.
If we take t; = 6, then by (2.18) we get
ty 2 3.994824489, t3 ~2 0.458783759.
The corresponding triangle A; A>Aj5 is shown in Fig. 4.
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a) b)
Fig. 5

In connection with this example let us remark that for £; = tp by (2.18), since D = 0,

we have

b=ty = 2P 1 885618083,
Pty

If we take t; = fp, then by (2.18) we have
th=ty, t3=0.

In this case, we have D = 4r2p?t2 since (p? +12)(t2 —4rp+ p?) = 0. Using this example
in connection with relation (2.11) we can write

| — tity + tots — taty | ~ 24.88888889, 4rp — p° ~ 24.88888889.

Remark 2 It is easy to see that proving Theorem 2.2 we in fact give another proof of
Poncelet’s closure theorem for triangles where circles are intersecting, using very simple
and elementary facts. Therefore, this theorem may be interesting in itself.

Relation (2.11) which has the key role in the proof of Theorem 2.2 has also an important
role in the following theorem.

Theorem 2.3 From (2.11) follows Euler’s relation given by (1.3).

Proof. Let ABC be an axially symmetric triangle as shown in Fig. 5a and let PQR be
a degenerate triangle as shown in Fig. 5b. Then

H=(r+2)-p" H=6=r—(z-p),

w=2>—(r—p? wm=0, u=—-u.

In connection with u; let us remark that #; = |PQ| and [PQ| = |PT|. Theorem 2.3
immediately follows from

ULy + Uolin + Usldy| =4rp— p*  or 17 =drp—p?

since
22— (r—p) =drp—p? =22 —1*=2rp. O



Elem. Math. 59 (2004) 105

The following may also be interesting, namely, we can write
—tity + tats — taty = —2tity + 13, —l + lols — Usly = —14,

and by (2.11) it holds
=241ty + t% = —M%

or
At = (55 +15)7,

which can be written as
(P +2rp—22)(r+2z—p?=0.
Let us remark that from z?> — 1> = 2rp, putting r +z = p, we get z = 3r and that for

z = 3r, p = 4r it holds z° — r* = 2rp. In this limit case we have 4rp — p> = 0. Thus in
this case, t; =t = t3 = 0 (the triangle becomes tangential point of C; and C,).

3 Some relations concerning bicentric quadrilaterals

when excircles instead of incircles are under consideration
Notation used:
Let r, p and z be any given lengths (positive numbers) such that

22 =12 4 p? + A2 p? + pt (3.1)

Let M and O be points and C; and C, be circles such that
IMO| = z, C1 = M(p), Cy, = O(r). (3.2)
The circles C; and C, are not intersecting since from (3.1) it follows that
2 2 %)
22>1r +p 4 2rp or 2>71+p.
Let us remark that (3.1) follows from Fuss’ relation (1.1), namely, from
(1,2 _ ZZ)Z — 2p2(1’2 +Z2)

it follows that

22 =11 4 p? £ /A2 + pt.
The condition for a bicentric quadrilateral where C; is inside of C; is given by

22 =11 4 p? — A2 + p*, (3.3)

from which it follows that z < r — p.
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Fig. 6

Now, for example, let r =4, p = 3, z = 7.115617418 (see Fig. 6). It is easy to see that
(t1 —ty +t3 — ta)p = area of quadrilateral A;AA3Aq4, (34)
where
|A1As| =t — ta, |A2As| =t — s, |AsAs| =ts— 13, |A4A1] =1t — L4

Thus, in this case, we must instead of f, and f4 take —f, and —f4. It is because we must
use oriented angles. Namely, if the angle MA;T;, i = 1,2,3,4, is negatively oriented,
then instead of f; we must take —f;.

It is easy to see that for every quadrilateral A;A,A3A4 whose excircle is C; and cir-
cumcircle is C, either
tl’ _t27 t37 _t4 (35)

or
_t17 t27 _t37 t4 (36)

holds. Namely, the angles MA;T; and MAsT; are positively oriented and the angles
MA,T, and MA4T; are negatively oriented or it is conversely.
Also, it can be easily seen that

|ii +£i+1| = \AiAi+1|7 l = 17273747

where
t; =1t if ZMA;T; is positively oriented,
t;=—t if ZMA;T; is negatively oriented.
Using vertices A1, As, As, Aq instead of Ty, T, Ts, T4 this can be expressed as follows:

=t; if ZMA;A;1 is positively oriented,

t;
t; = —t; if ZMA;Ai;1 is negatively oriented.
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Of course, if ZMA;A;.1 is “obtuse” then its supplement is taken. Now, using Fig. 6,
we shall prove that

B =P+ P —Ba=0°, (3.7)

where
B; = measure of /ZMA;T;, i=1,2,3,4.

First from triangle PA; Ay, since the measure of ZA3A4T, = 204, we have
264 =201 + . (3.8)
Now, from triangle PA,A3 we see that
w+ 20+ (180 — 23;) = 180°. (3.9)

From (3.8) and (3.9) follows (3.7).

Before we state the following theorem we shall prove that
(tl —t)y+t3 — t4)p2 = —ti1trts + trtsty — tataty + tatits. (310)
Starting from (3.7) we can write

tan(By + 43) = tan(Br + Ba),

from which, using the relation

f:m@, i—1234, (3.11)

i
we readily get (3.10).

Theorem 3.1 Let A1ArAsA4 be a bicentric quadrilateral whose excircle is C; and
circumcircle is Cy, where Cy and C, are given by (3.2). Then

tits = bty = p?, (3.12)

where
ti = AT, i=1,2,3,4.
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Proof. Since either (3.5) or (3.6) is possible we may assume without loss of generality
that (3.5) is valid, namely, that the situation is like that in Fig. 6, where

|A1As| =ty — by, |AsAs| =ty — 13, |AsAy| =ts—t3, |A4A| =1 —t4

Since (3.4) holds we have the equality

(h—tatts—ta)p=+/(t —t)(f2 —t3)(ta — t3)(t1 — ta)

or
(th —ta+ 1 — 12)20% = (hy — ) (b — £2) (b4 — £3) (F1 — t4). (3.13)

The above equality, using equality (3.10), can be written as
(h =ty +ta —ta)(—titats +hatats — tataty +H4tits) = (H —t)(fa —t3) (B4 — 13) (1 — 14)

or
1313 — 2t tataty + 1315 = 0,

from which it follows that (13 — t2£4)> = 0 or
tits = bty (3.14)
Now, from (3.10), putting £ = 42, we get

2 tta(ts + t2) (k2 + £3)
(h+t)(t2+13)

= fits.

Also it is valid p2 = tyt4 since (3.14) is valid. Theorem 3.1 is proved. O
Corollary 3.1.1 Let A1AyA3A4 be any given tangential quadrilateral whose excircle
is Cy1. Then this quadrilateral will be a bicentric one whose circumcircle is Cy iff (3.12)
holds.

Proof. From (3.10) and (3.12) follows (3.13). O

Theorem 3.2 Let ABCD and PRQS be two bicentric quadrilaterals such that their
excircles are congruent. Then their circumcircles are also congruent iff

tity + tats + tats + taty = Uity + Uolis + Usliy + Uglly, (3.15)

where t; and w, i = 1,2,3,4, are the lengths of the consecutive tangents relating to
ABCD and PQRS, respectively.
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Proof. First, let us remark, that from (3.5) and also from (3.6) it follows that
L1ty +Eots +Eaty +E4E = —tity — tafs — fafs — taty,

where t; = t; or t; = —t; depending on how the angle MA;T; is oriented. Using the
expression —(tt; + tots + tats + t4t;) and the equalities t1t3 = p? and toty = p° given
by (3.12), we find that

t2t2+ 2t2+t2+4
—(t1ta + tats + bty + taty) = L2 ”Etlltz Do (3.16)

Let r be the radius of the circumcircle of ABCD. We have to prove that r is also
the radius of the circumcircle of PQRS iff (3.15) holds. In the proof we shall use the
well-known relations concerning chordal quadrilaterals. These relations are

2 (ad + cd)(uclgrjzbd)(ud + bc)7 P — abed, (3.17)

where
a=t —t, b:tz—ta, =1ty —ta, d:t1—t47 ]:areaofABCD.
From (3.17) it follows that

16 = 4 1P 20y 2 cda dab
d a b c

which, using (3.12), can be written as

1+ A+ 85) + o
—ht

2
167207 + 4p* = { +2p2} : (3.18)

Analogously, for the bicentric quadrilateral PQRS we have

2,2 20,2 2 4 2

16r%p2+4p4:{”1“2+P(”1+“2)+P +2pz} 7
—Uilr

where r; is the radius of the circumcircle of PQRS. Thus, iff (3.15) is valid, then r; = r.

Theorem 3.2 is proved. O

Now, we shall prove that the left-hand side of (3.18) can be written as 4(r% + p? —2%)?,
namely, that it holds
1672 0% +4p* = 4(12 + p? — 2%

For this purpose, we shall add p* + 212 p> — 2p>2z% on both sides of Fuss’ relation for a
bicentric quadrilateral
207 (rF +2%) = (r* —22)%
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Fig. 7

So, we can write
2p2(1,.2 T ZZ) + (p4 +21"2p2 _ 2p222) s (1,.2 _ ZZ)Z + (p4 T 21,2p2 _ 2p222)

or
41"2p2 +P4 _ (rZ +p2 _22)2.

Thus, the equality (3.18) can be written as

BB+ (H+85)+0!

= = I — 5%
> BE +p° (5 + 1) + o 22
nh =2(z" —17). (3.19)
Since (3.16) holds, we have the following relation
tity + tots 4 taty + taty = 2(2% — 7). (3.20)

In some of the following theorems we shall use the relations

tm=y/(z=1) =0  tm=y/(z+1)?—p" (3.21)

See Fig. 7. As can be seen, t,, = |A3T3| is the length of the shortest tangent that can be
drawn from C; to Ci, and ty = |A;Ti| is the length of the largest tangent that can be
drawn from C; to C;.
By (3.12) it holds

tutm = p°. (3.22)

Theorem 3.3 From (3.22) follows Fuss’ relation given by (1.1).
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Proof. 1t holds
By = (P~ 2V ~ 20207 +2) + 4,
and from (3.22) it follows 2,13, — p* = 0, that is
(r? —22)2 = 20%(r* +22) = 0.
Theorem 3.3 is proved. O

Thus, in this way we can deduce Fuss’ relation for bicentric quadrilaterals.

Fuss’ relation for bicentric quadrilaterals is closely connected with the relations (3.12)
and (3.20). So, for example, using Fig. 7, it is easy to show that (3.20) holds for

th=ty, ti=p, ts=tw, ta=p.

First, let us remark that from f,t4 = pz, since t, = t4 and (3.12) holds, it follows that
t,» = p. So, in this case, we have

tits + tats + tata + taty = 2p(tm + tm),
and it is easy to show that
20(tw + tar) = 2(z% — 1. (3.23)
Namely, since 2ty = 2p%, we can write
P(tw + tn)? = [z = 1) + (2 +1)° = 20°) + 29" = 20°(* + 2°).

Thus,
2o(tw +tm)) = [2(2° = )],
since 2p%(r2 + z2) = (2 — #*)? by Fuss’ relation (1.1).

Also, using Fuss’ relation, it can be easily shown that the following theorem holds.

Theorem 3.4 It holds

(24 1)ty = (2 — 1), (3.24)
- Z47
M , tv = , 3.25
P M=—p (3.25)
2 42 /D 2 _ 42 /D
tm - z r b tM - z Tt ’ (326)
2p 2p

where
D = (22 — 1?)? —4p*. (3.27)
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Proof. The proof that (3.24) holds:
(z+ ) — (2 — 1) = 4rz[(z2% — 1) =202 (2> + 1) =4rz- 0= 0.
Concerning (3.25), it is easy to show that

r—2z

2 282 Dfinid 2
=27 =2p(r' +2°) <= /(r—2z)2 —p2 = ——p,
( )" =2p"(r" +2°) (r—z)-p e
r+z
(P =2 =200 +2°) = \[r+ 2 = P = —p.
So, from
2
T S F A
e ==
it follows
[ 2% = g ((r —z2)? +(r+ z)z)
or

(1,2 _ ZZ)Z _ 2p2(1’2 —|—Z2).

Obviously, the converse is also valid. Concerning (3.26), using (3.22) and (3.23), we can
write 5 )
butit = 02, bt b=
yel

from which (3.26) follows. (Il
Corollary 3.4.1 The following is true:
Y
Proof. Tt follows from (3.27). Of course, it also follows from (3.1) since \/4r2p2 + p* >
it O
Theorem 3.5 It holds
A(ty, —ty, t3, —tg) -H(t1, —ts, t3, —ts) = p?, (3.28)

where A(t1, —ty, t3, —ts) and H(t1, —ty, ts, —t4) are the arithmetic and harmonic means
of t1, —ta, t3, —t4.
Proof. (3.12), tits = tats = p?, implies t1trtaty = p*. If we divide equation (3.10) by
t1tafats, we can write
(t —ty +t3 —t4)p? _ —hibats + batsts — tatats + tatify
ot N titatsty

or
h—thtts—t 4 2

Theorem 3.5 is proved. O
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Theorem 3.6 Let ABCD be any given bicentric quadrilateral whose excircle is C1 and
circumcircle is C,, where Cy and C, are given by (3.2). Then

ef =2(z% = — 2%, (3.29)

where e = |AC|, f = |BD|. In other words, for every bicentric quadrilateral whose
excircle is Cy and circumcircle is Cy, the product of the lengths of its diagonals is the
constant 2(z> — > — 2p?).

Proof. Leta=1t, —ty, b =1, — t3, c = t4 — t3, d = t; — t4 be the lengths of the sides
of ABCD. Then, by Ptolomy’s theorem,

ef =ac+0bd,

and we can write

ac +bd = (i’l - tz)(t4 - ta) + (tz — tg)(i’l — t4)
= (tita + tats + tats + taty) — 2(t183 + tats)
=3 — ) — 3 1) =2 1 — 2,

It is easy to see that we have the same result if instead of the possibility (3.5) we take
the possibility (3.6). Theorem 3.6 is proved. O

Theorem 3.7 Let v, p and z be any given positive numbers such that (1.1) is satisfied,

and let ty, and tpy be given by (3.21). Then every positive solution (t1,t>,t3,t1) € Ri
of the equations

tits + tats + tats + ity = 2(22 —12), tits = p?, tatsy = p

is given by
t1 is a positive number such that t, <t; < tp, (3.30)
2 42 D
ty = %7 (3.31)
P2 + t1
2
b= (3.32)
f
2
ty = p_7 (3.33)
15
where

D= (2 =PV - (0 + B (3.34)
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Proof. The equation 1ty -+ tots 4 t3ts + tat; = 2(z> — r?), using equations t 3 = p? and
tyts = p?, can be written as

(P + )85 —2(2 =P )ita + P (1 + p°) = 0, (3.35)
from which it follows that

(@ -)H VD
(b)ip= W
It is unessential which of (£,); and (t,), will be taken for ¢, since

Fo_ PPt (@ -rh-VD
(th (@@ —-r)t+VD e

= (f2)2.

If we take t» = (t2)1, then £ = (t,),, that is, by (3.33), (f2)» = ts. But if we take
)

ty = (t2)», then £ t7)1. Thus, in this case (t7); = t4.
ty

Now, since in the expression of ¢, in (3.31) appears the term /D, we have to prove that
D > 0 for every #; such that ¢, < t; < tym. Of course, for this purpose it suffices to
prove that D = 0 for {; = t,, and t; = tum.

It is easy to show that
(22 = PPh, = P+ )7 = 0= (11),
(22 =Pty — P*(0 + 1) = 0 = (L.1),
where (1.1) stands instead of Fuss’ relation given by (1.1). So, for {; = t,,, we can write
(2 = P)Hy = P+ £ = (2 = TP(@ — PP = 202 + 1) = (2= 7) - 0=0.
This completes the proof of Theorem 3.7. O

Although t; is not given explicitly but by condition t,, < #; < fp, it is easy to check
that for ¢y, t,, ta, t4 given by (3.30)—(3.33) in the end we get

(22—t +vD N (z> =)ty —/D

=2(2 - 1%).
0 0 (z7—r°)

tltZ + t2t3 + t3t4 sl t4t1 —

Corollary 3.7.1 Let C; and C, be circles such that (3.1) and (3.2) holds. Let A be any
given point on Cy and let ty be the length of the tangent ATy drawn from C, to Cy.
Then the lengths ty, ts, t4 of the other three tangents drawn from C, to Cy are given by
(3.31), (3.32) and (3.33).

Here is an example:
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A, A,

Fig. 8

Example 2 Tetr =4, p=3, z="7.115617418. Then
tm =~ 0.840875671, tp ~ 10.70312807, D =~ 28799.07696.
If we take t; = §, then

t) ~ 6.119986271, t3 =1.125, 4~ 1.470591534.

The corresponding quadrilateral A;A,A3A4 is shown in Fig. 8.
It can be checked that

ity + oty + b3ty + taty & 69.26402247 = 2(2% — 7).
Also, it can be checked that

B ~ 20.55604522°, B, ~ 26.11396343°,
By ~ 69.44305478°, B4 ~ 63.88603657°,

B =05+ B — =07,

where 3; = arctanf, i=1,2,3,4.

If in this figure we write A, where is A4 and A4 where is A, then the angles MAT;

and MA5T; will be negatively oriented and in this case will be

—B1+ B2 — B3+ B4 =0°.

Remark 3 As can be seen, by proving Theorem 3.7, we in fact give another proof
of Poncelet’s closure theorem for bicentric quadrilaterals, when the excircle instead of
the incircle is under consideration. In this proof, we use very simple and elementary

mathematical facts. Therefore, this proof may be interesting in itself.
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