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1 Introduction

From the beginnings algebraic methods were used for investigating genetic principles and

structures. In particular, this is the case with so-called factor-union phenotype systems
introduced by Cotterman ([1]). In these systems a set of properties can be assigned to each

gene in such a way that phenotypes are determined by unions of these sets. These properties

which can be considered to correspond to imaginary or actual physical factors may
help in explaining and understanding the evolution and structure of phenotype systems.

In the literature there exist several algorithms for deciding if a given phenotype system

possesses a so-called factor-union representation and for constructing such a representation

(cf. e.g. [7], [3] and [4]). (In [5] some results of [3] are generalized.) We mainly follow
the method published in [4]. However, the presentation given here explains in more detail
the algebraic background and so is giving more insight into the mutual relations between

algebra and genetics. Thus, the reader may better understand the main algebraic ideas and

methods forming the background for the provided algorithm solving a problem of gene-

Merkmalsausprägungen (sogenannte Phänotypen) bei Individuen werden im einfachstet)

Fall durch ein Genpaar (einen sogenannte« Genotyp), das sich an einem beslimm-
ten GcnorL beündet, bestimmt. Es ist bekannt, dass verschiedene Genotypen dieselbe

Merkmalsausprägung hervorrufen können, Viellach isl es möglich, dieses Phänomen
dadurch zu erklären, dass man jedem Gen gewisse Faktoren zuordnet. Im vorliegenden

Artikel geht es um die Frage, wie man erkennen kann, ob eine solche Zuordnung

überhaupt existiert, bzw. wie man eine solche finden kann. Dabei gelingt es dem
Autor zu zeigen, dass sich sehr allgemeine Konzepte aus dem Gebiet der Algebra bei
Jer I.i'suiii.1 Jes i.viKiimk'ii Problems ;ils nui/licli erweisen.
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tics. Moreover, it is shown that some of the basic algebraic ideas used in this paper follow
from results in universal algebra that can be formulated in a very general way.

We start by explaining some fundamental notions of genetics and then giving an illustrative
example.

The fundamental idea of mathematical population genetics is the fact that certain properties

of individuals depend on a couple of so-called "genes" which are located at a certain
"locus". This couple of genes is called a "genotype". Different genotypes may cause the

same property, meaning, they may belong to the same "phenotype". It is natural to assume
that certain "factors" assigned to each single gene are responsible for the occurrence of
this phenomenon. The following example will illustrate this in more detail:

Example 1.1. The human AiA2<B(9-blood group system is based on the four genes A\,
A2, B and O. The blood groups (phenotypes) A\, A2, A\B, A2B, B and O correspond to
the following genotypes:

Phenotype
blood group
Ai
A2

A2B
B

0

system of blood groups
corresponding genotypes

AiAi,AiA2,Ai<9
A2A2,A2O

A2B
BB,BO
00

Now the question arises if this correspondence between blood groups and genotypes can

be explained by assigning to each gene x a set f(x) of certain "factors" in such a way that

two genotypes yz and uv correspond to the same blood group if and only if f(y) U f(z)
/(«) U f(v). If we assign to the genes A\, A2, B and O some of the factors 1, 2, 3 and 4

according to the following table:

gene

M
A2
B

0

assigned factors

1,2,4
2,4
3,4
4

then this is the case since to the genotypes A1A1, A1A2, A\O, A2A2, A2O, A\B, A2B,
BB, BO and OO there are then assigned factors according to the table on the top of the

next page.

Now the following problems arise:

Problem 1 Decide if a given phenotype system possesses a factor-union representation.

Problem 2 Construct such a representation if it exists.

Problem 3 Is the representation (if it exists) unique up to some identification?

Problem 4 If a representation exists, can one find a minimal one (with a minimum number
of factors)?
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genotype
AiAi
AiA2
AiO
A2A2
A2O
AiB
A2B
BB
BO
00

assigned factors

1,2,4
1,2,4
1,2,4
2,4
2,4
1,2,3,4
2,3,4
3,4
3,4
4

E.g., the representation given in Example 1.1 is not minimal (as indicated at the end of the

paper).

The aim of this paper is to present the algorithm published in [4] for solving the first two of
these problems and to explain the corresponding algebraic background in a clear manner
in more detail.

2 Formulation of the problem in mathematical terms

Let G be a fixed finite non-empty set of genes and G2 denote the set of all one- or two-
element subsets of G. G2 may be considered as the set of all genotypes where each genotype

xy is identified with the set {x, y}. A phenotype system a is nothing else than an

equivalence relation on G2, so may be considered as a subset of G2 x G2. By a factor-
union representation of a we understand a mapping / assigning to each element of G a

certain set such that

{(A,B)eG22 I \Jf(x)
xeA xeB

a.

a is called a factor-union system if it possesses a factor-union representation. Now the first
two of the above questions can be formulated as follows: Is a given phenotype system a

factor-union system? If it is a factor-union system, how could one construct a corresponding

factor-union representation1?

3 Algebraic background

The basic algebraic structure used in the following is that of a semilattice. A semilattice is

a commutative idempotent semigroup. There is a natural bijective correspondence between
semilattices (S, v) and posets (S, <) every two elements of which have a supremum. (Here
and in the following the term "poset" is used as an abbreviation of the term "partially
ordered set".) The correspondence is given by

x < y if and only if x v y y resp. x v y := sup(x, y).
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If A is an arbitrary set and B denotes the set of all finite non-empty subsets of A then

(B, U) is a so-called free semilattice with free generating set A where the elements of A are
identified with their corresponding singletons. This means that every mapping / from A
to the base set S of some semilattice (S, v) can be uniquely extended to a homomorphism
g from (B, U) to (S, v), namely via g(x) : V f(z) for all x e B. If A coincides

zex
with the finite non-empty set G then B 2G \ {0}. From the fact that (2G \ {0}, U)

is a free semilattice with free generating set G and from the definition of a factor-union
representation of a phenotype system one obtains

Remark 3.1. The factor-union systems are exactly the restrictions of the kernels of the

homomorphisms from (2G \ {0}, U) to semilattices of the form (2F, U) (with an arbitrary
set F) to G2 since they arise by assigning to each element of G a certain subset of F and

by extending this mapping / from G to 2F to a mapping / from G2 to 2F by defining
f({x, y}) := f(x) U f{y) for all x,y e G. Hence / may also be considered as the

restriction of the unique extension of/ to a homomorphism from (2G, U) to (2F, U) to G2.

In order to see that these kernels are exactly the congruences on (2G \ {0}, U) we need a

representation theorem for semilattices. But first we consider a more general situation.

By an algebra we mean a set together with a (possibly infinite) family of unitary operations
on it. The corresponding family of the varieties of the operations is called the type of the

algebra. A variety is an equationally definable class of algebras of the same type, i.e. the
class of all algebras of a fixed type which satisfy a fixed set of laws. For every class ÏC

of algebras of the same type H(/C), \{K.) and S(/C) denote the class of all homomorphic
images, isomorphic images and subalgebras of members of 1C, respectively. By the kernel
of a mapping / with domain M we mean the equivalence relation {(x, y) e M2 \ f(x)
f{y)} on M. Now we can state the following

Lemma 3.1. IfïC\, IC2 are classes of algebras of the same type, H(/Ci) ç I(S(K,2)) and
A e ÏC\ then the congruences on A are exactly the kernels of the homomorphisms from A
to members 0//C2.

Proof. Let © be a congruence on A. Then .4/© e H({A}) ç H(/Ci) ç l(S(/C2)). Hence
there exists some B e /C2 and some C e S({B})wifhC A/&. Let /denote the canonical

homomorphism from A to A/® and g an isomorphism from A/& to C. Then g can be

regarded as a homomorphism from A/& to B. Since g is mjective, go/ has the same
kernel as / and hence © is also the kernel of the homomorphism g o / from A to the
member B of IC2.

As a consequence we obtain

Corollary 3.1. If V is a variety, ÏC a subclass ofV such that every member ofV can be

embedded into some member ofX and A e V then H(V) V Ç I(S(/C)) and hence
the congruences on A are exactly the kernels of the homomorphisms from A to members

ofK.. a
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Now we state the above mentioned representation theorem (cf. e.g. [6]; for the case of
distributive lattices see [2]).

Theorem 3.1. (Representation theorem for semilattices) Every semilattice (S, v) can
be embedded into (2s, U).

Proof. If / denotes the mapping from S to 2s defined by f(x) := [y e S \ y Jf x) for
all x e S then since x f\(S \ f(x)) for all x e S, f is injective and since for any three
elements a, b, c of S, c > a v b is equivalent to (c > a and c > b), f is a homomorphism
from (S, v) to (2s, U). D

Combining our results we obtain

Proposition 3.1. The kernels of the homomorphisms from (2G \ {0}, U) to semilattices of
the form (2F, U) (with an arbitrary set F) are exactly the congruences on (2G \ {0}, U).

Proof. This follows from Theorem 3.1 and Corollary 3.1 by specializing V to the variety
of semilattices, ÏC to the class of all algebras of the form (2F, U) (with an arbitrary set F)
and A to the algebra (2G \ {0}, U). D

Combining Remark 3.1 with Proposition 3.1 yields (cf. [4])

Corollary 3.2. The factor-union systems are exactly the restrictions of the congruences
on (2G \ {0}, U) to G2. a

This result can be sharpened as follows (cf. [4]):

Proposition 3.2. A phenotype system a is a factor-union system if and only if it is the

restriction of the congruence on (2G \ {0}, U) generated by a to G-i.

Proof. If a is the restriction of a congruence $ on (2G \ {0}, U) to G2 and © denotes the

congruence on (2G \ {0}, U) generated by a then © ç $ and hence

which shows a ®C\G\. The assertion of the lemma now follows from Corollary 3.2. D

How can one construct the congruence on (2G \ {0}, U) generated by a given phenotype
system1? Since an equivalence relation © on the base set S of a semilattice (S, v) is a

congruence on (S, v) if and only if (x, y) e © and z e S imply (x v z, y v z) e ©, the

following result is easy to verify (cf. [4]):

Lemma 3.2. If a is a phenotype system then the congruence on (2G \ {0}, U) generated
by a is the transitive closure of{(x U z, y U z) | (x, y) e a, z ç G}. D

Now we can present a method for constructing a factor-union representation of a factor-
union system.

Theorem 3.2. (Construction of a factor-union representation) If a is a factor-union
system and © denotes the congruence on (2G \ {0}, U) generated by a then the mapping

ffrom G to (2(2G\{0»/0, U) deflnedby f(x) := [y e (2G \ {0})/© | y £ [{x}]©} for all
x e G is a factor-union representation of a.
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Proof. Since © is the kernel of the canonical homomorphism g from (2G \ {0}, U) to

((2G \ {0})/©, U) and the mapping h from (2G \ {0})/© to 2(2G\W>/@ defined byh(x) :

[y e (2G\{0})/@ | y ^xjforallx e (2G\{0})/©is an embedding of ((2G\{0})/@, U)

into (2^2 \{0))/0, u) according to the proof of Theorem 3.1, h o g is a homomorphism
from (2G \ {0}, U) to (2(2G\{0))/e, U) with kernel © which together with © n G\ a

(which holds according to Proposition 3.2) shows that the mapping / from G to 2^2 \{0')/e

defined by f(x) := [y e (2G \ {0})/© | y t [Ml©} for all x e G is a factor-union
representation of a. D

Remark 3.2. If a given phenotype system a with n genes has a factor-union representation

then 2" factors are sufficient. Hence the problem formulated in the beginning could be

solved in a finite number of steps by taking a fixed 2"-element set F of factors and checking

all (22 )" 2"2 mappings from G to 2F if they are factor-union representations of a
or not. In [7] it was proved that even a factors suffice.

Remark 3.3. The number of factors used in the factor-union representation described in
Theorem 3.2 can be reduced by using an improved version of the representation theorem
for semilattices. As a sharpening of the result in Theorem 3.1 it can be proved that every
semilattice (S, v) can be embedded into the power sets over a subset of S. In order to see

this let us define meet-irreducible elements of a poset.

An element of a poset is called meet-irreducible if it is not the meet of two other elements.

A poset is said to satisfy the ascending chain condition if every ascending chain is finite.

Now we prove the following lemma:

Lemma 3.3. In every poset (P, <) satisfying the ascending chain condition every element

a is the meet offinitely many meet-irreducible elements.

Proof. Let M denote the set of all meet-irreducible elements of (P, <). If a e M we are
done. Otherwise there exist b, c e P \ [a] with a b a c. If b, c e M we are done.

lib ^ M then there exist d, e e P \ [b] with b d a e. Then a d a e a c. Since

(P, <) satisfies the ascending chain condition, the described procedure has to terminate
after a finite number of steps thus finally arriving at finitely many elements of M the meet
of which is a. D

A direct consequence of Lemma 3.3 is

Corollary 3.3. In every poset satisfying the ascending chain condition every element is
the meet of its meet-irreducible upper bounds. D

Now we are ready to prove (cf. e.g. [6]; for the case of distributive lattices see [2])

Theorem 3.3. (Improved version of the Representation theorem for semilattices)
Every semilattice (S, v) satisfying the ascending chain condition can be embedded into
(2M, U) where M denotes the set ofall meet-irreducible elements of(S, <).

Proof. If / denotes the mapping from S to 2M defined by f(x) := {y e M | y jf x] for
all x e S then, since x /\{M \ f{x)) for all x e S according to Corollary 3.3, / is an
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injective homomorphism from (S, v) to (2M, U) which follows in an analogous way as in
the proof of Theorem 3.1. D

The improved version of our theorem describing the construction of a factor-union
representation can now be formulated as follows (cf. [4]):

Theorem 3.4. (Construction of a smaller factor-union representation) Ifa is a factor-
union system, © denotes the congruence on (2G \ {0}, U) generated by a and M denotes
the set of all meet-irreducible elements of ((2G \ {0})/©, U) then the mapping f from
G to 2M defined by f(x) := [y e M\y ^_ [{x}]&} for all x e G is a factor-union
representation of a. D

4 The algorithm
Now we can present an algorithm for solving the first two of the problems stated at the

beginning.

Algorithm for checking if a given phenotype system a is a factor-union system and
for constructing a corresponding factor-union representation (cf. [4])
Construct the congruence © on (2G \ {0}, U) generated by a by forming the transitive
closure of {(x UzjUz) | (x, y) e a, z Ç G] (Lemma 3.2). If © n G\ ^ a then a is not
a factor-union system (Proposition 3.2). Otherwise construct the Hasse diagram of ((2G \
{0})/©, <). Let M denote the set of all meet-irreducible elements of ((2G \ {0})/©, <).
Then the mapping / from G to 2M defined by f(x) := {y e M | y jf [{x}]©} for all

x e G] is a factor-union representation of a (Theorem 3.4).

Now we return to our introductory example.

Example 4.1. We have

G {Ai,A2,B, O],

a {{Ai}, {Ai, A2}, {Ai, O}}2 U {{A2}, {A2, O}}2 U {{Ax, B}}2 U {{A2, B}}2U

U{{B},{B,0}}2U{{0}}2,
© {{Ai}, {Ai, A2}, {Ai, O}, {Ai, A2, O}}2 U {{A2}, {A2, 0}}2U

U {{Ai, B}, {Ai, A2, B}, {Ai, B, O}, {Ai, A2, B, O}}2 U {{A2, B}, {A2, B, 0}}2U

U{{B},{B,0}}2U{{0}}2,

where © denotes the congruence on (2G \ {0}, U) generated by a. The Hasse diagram of
((2G \ {0})/©, <) looks as follows:

[{A2}]©

[{A2, B}]&
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Hence, the mapping / from G to 2M (where M denotes the set {[{Ai}]©, [{Ai, B}]&,
[{A2, B}]&, [{B}]&} of all meet-irreducible elements of ((2G \ {0})/©, <)) defined by

/(Ai) := {[{B}]&,[{A2,B}]&},
/(A2) := {[{B}]&},
f(B) := {[{Ai}]©},
f(O) := 0

is a factor-union representation of a.

Investigating the computational complexity of the proposed algorithm seems to be very
difficult. Forming the transitive closure of the described binary relation may be a long
procedure if G is large. If © has k classes then (*) comparisons are necessary in order to

determine the factor poset ((2G \ {0})/©, <). In order to determine the meet-irreducible
elements one has to consider the possible mfimum of any two distinct elements of the factor

poset. The number of these pairs is again (*). Software packages for algebraic structures

may be used in order to apply the proposed algorithm in an as effective as possible way.
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