Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 62 (2007)

Artikel: Euler's polyhedron formula : a starting point of today's polytope theory
Autor: Ziegler, Gunter M. / Blatter, Christian

DOl: https://doi.org/10.5169/seals-98925

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.07.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-98925
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© Swiss Mathematical Society, 2007
Elen1. Math. 62 (2007) 184 — 192
0013-6018/07/040184-9 | Elemente der Mathematik

Euler’s polyhedron formula - a starting point
of today’s polytope theory

Giinter M. Ziegler and Christian Blatter

1. Euler’s polyhedron formula, known as
e—k+f=2 (1

(and shown on the commemorative stamp put out by the Swiss Post, Fig. 1), or in more
modern notation as

fo—h+ =12, (2)

represents the historical starting point of algebraic topology; moreover, it is one of the
corner stones of modern f-vector theory about which we shall hear more later on. While
regular polyhedra, the “Platonic solids”, were studied since antiquity, it is Fuler’s formula
that for the first time puts general polyhedra into the center of attention.

In this lecture we start by recounting the story of this formula, but then our attention will
gradually shift to f-vector theory. The outline of the talk is as follows:

— a precursor (Descartes, ~ 1630),
— the Euler-Poincaré formula for d-dimensional polytopes (Schléfli 1852),
— the characterisation of the f-vectors of 3-polytopes (Steinitz 19006),

— the characterisation of the f-vectors of simplicial d-polytopes (Billera & Lee 1980
and Stanley 1980),

— the characterisation of the f-vectors of 4-polytopes (work in progress, still incom-
plete).

Before we actually begin, a bit of terminology! (Here we are appealing to the three-
dimensional intuition of the reader.)

By a polytope P we mean the convex hull of a finite set of points in some R?, where it is
tacitly assumed that P has nonempty interior. P possesses (proper) faces of dimensions
between O and d — 1, where the O-dimensional faces (known as the verfices) are the ex-
tremal points of P, and the (d — 1)-dimensional faces are called facers. The number of
r-dimensional faces is generally denoted by f (0 <r <d — 1).
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Figure 1

When the vertices are “in general position” no more than ¢ of them lie in the same hy-
perplane. It follows that in this case all facets and consequently all proper faces of P are
simplices of the respective dimensions. Such a polytope is called simplicial. The octahe-
dron in R? is an example.

There is a second way to obtain a polytope: P may be given as intersection of finitely
many closed halfspaces, where it is assumed that this intersection is bounded. It is a basic
theorem that this second construction principle leads to the same class of objects as the one
described a moment ago. In addition there is a combinatorial duality at work under which,
e.g., the octahedron corresponds to the cube. Again: When the defining hyperplanes are
“in general position” then no more than d of them will go through the same point. It
follows that in this case each vertex lies in exactly d facets. Such a polytope is called
simple. Combinatorially, simplicial and simple polytopes are dual to each other.

2. When Descartes died in Stockholm, 11 February 1650, his mathematical “Nachlass™
remained in Sweden for a few years, and then was sent to Paris. It arrived there in bad
condition but nevertheless was published in part by 1667. In 1676 Leibniz had a chance to
look at some of the unpublished material, and among these papers he found a handwritten
note “Progymnasmata De Solidorum Elementis™ that took his interest, and he copied part
of it to take home. Descartes’ original note went lost, and Leibniz’ copy [2] remained
unpublished at the time. It took 200 years until it was found in an uncatalogued part of
Leibniz’ “Nachlass™ at the Royal Library of Hanover. Fig. 2, taken from [4], shows an
enlargement from the relevant page. Mathematically it says the following: Consider a
polyhedron, i.e., a polytope in R?. Let « be the number of “solid angles” (i.e., vertices), ¢
be the number of facets, and p be the number of “plane angles” (i.e., angles at the vertices
of the facets). By arguing about the sum % of these plane angles Descartes proves that

p=2¢+2c—4. 3)

Now each plane angle is formed by two edges, and each edge appears in four plane angles.
It follows that p = 2k, s0 (3) may be interpreted as a variant of (1) and can indeed be seen
as a precursor of Euler’s formula.
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Figure 2

We come to Euler. His formula makes its first appearance in a letter to Goldbach,
14 November 1750 [8]. Maybe in the same year Euler submitted a corresponding note
to the Petersburg Academy. It appeared in the Academy’s Proceedings of 1752/53 which
were published only in 1758. Here is what Euler had to say: Consider any polyhedron, let
S be the number of its solid angles, H be the number of its “hedra” (i.e., facets), and A be
the number of its “acies” (i.e., edges). Then S + H = A 4+ 2. Voild! By the way, Euler
seems to be the first to speak about the edges of a polyhedron.

Figure 3

Here is a charming proof of Euler’s formula, taken from David Eppstein’s “geometry junk-
yard” [3]: Consider the 1-skeleton ' of P (a planar graph) and in the same figure (Fig. 3)
the 1-skeleton I of the “dual” P of P. Let T be a spanning tree of I'. 7' does not contain
any cycles, so it does not disconnect the plane. Smce T is maximal, it follows that there is
atree T C I such that each edge of P resp. P appears either in 7 or in T. The vertices
of T' are the vertices of P. So T has fp vertices and k := fp — 1 edges. Similarly, the
vertices of T correspond to the facets of P, so T has > vertices and k= = f2 — 1 edges.
Since k + k = /1, formula (2) follows.
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One of the pioneering figures in the higher-dimensional realm was the Swiss mathemati-
cian Ludwig Schlifli (1814-1895). He was less than well understood at his time, but
anyway, in his “Theorie der vielfachen Kontinuitdt” (written 1850-1852, printed only in
1901 [10]) he stated the following theorem, nowadays called the Euler-Poincaré relation:

Theorem. For every d-dimensional convex polytope one has

fo—fi+...+=D =1 — (D% (4)

The first full proof of this theorem was given by Poincaré, as a consequence of his devel-
opment of homology theory. The elementary “Ansatz” of Schlifli was only completed by
Bruggesser and Mani [1]in 1969. It uses the method of “shelling”, an induction procedure
adding facets to the boundary 1-by-1.

3. Euler’s formula (2) and its d-dimensional generalization (4) are necessary conditions
that the f-vector (fo, f1,..., fa—1) of a convex polytope must fulfill. Are there other
conditions? In other words, we are faced with the following general problem:

Problem. Describe (characterize, approximate, ...) for given d > 2 the set

Fy = {f: (T Tiswazs Jo—1] \ fisthe f-vector of a convex d-polytope}.

The case d = 2 is trivial: fo = f1 = 3 is necessary and sufficient.

In the case d = 3 one has the inequalities

f2=2f0—4, fos2f—4 (5)

They follow from (2) and the fact that each facet resp. each vertex incides with at least 3
edges. In the case of simplicial polytopes (e.g., the icosahedron) we have f> = 2fy — 4
and for simple polytopes (e.g., the cube) we have fy = 2> — 4. In 1906 Steinitz noted
[11] that F3 is fully described by (2) and the conditions (5):

Theorem. A vector (fo, fi, f») € Z° is the f-vector of a 3-polytope if and only if the
Jollowing conditions are satisfied:

fo—fi+t fa=2, fr<2fo—4, fo<2fr—4.

Our Fig. 4 shows a projection of F3 into the ( fy, f2)-plane. Because of (2), no information
is lost under this representation. It appears that simplicial and simple polytopes form the
“outer boundary” of F3. In higher dimensions simplicial and simple polytopes are still
“extremal”, so their f-vectors lie on the boundary of the corresponding cone (see Fig. 7),
but for d > 3 other types of extremal polytopes resp. f-vectors make the picture more
complicated and more challenging.

In 1922 Steinitz proved a much deeper theorem on 3-polytopes, and even to this day no
simple proof of this theorem has been found. Here one considers not the j-vector, a
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relatively coarse descriptor of a polytope, but the full information contained in the graph
of its vertices and edges:

Problem. Characierize the graphs that can occur as 1-skeleton of a convex 3-polytope.

In his Encyclopaedia article [12] Steinitz gave the following definitive answer to this prob-
lem:

Theorem. A graph U is the 1-skeleton of a 3-polyvtope if and only if it is simple, planar
and 3-connected.

A graph is called 3-connecied if any two of its vertices can be joined by three edge-paths
which are pairwise disjoint, apart from the endpoints. (Check this out for a dodecahedron!)

4. We return to the problem of determining F in general. In 1971 McMullen, combining
all information available at the time, formulated the so-called g-conjecture. This bold
conjecture described in full the possible f-vectors of simplicial d-polytopes. McMullen’s
conjecture was proven in 1980. The proof (as in Steinitz” theorem above) involves two
parts: For the necessity part, proven by Stanley, the “hard Lefschetz theorem for toric
varieties with V-singularities” is put into action; for the sufficiency part, due to Billera
& Lee, one has to construct an actual d-polytope for each f-vector that is theoretically
admissible. Both parts of the proof are magnificent achievements!

We omit the details (!), but in order to convey the flavour of things we state what the
g-theorem has to say in the case d = 4:

Theorem. The vector £ = (fo, f1, [2, f3)isthe [-vecior of a simplicial convex 4-polyiope
if and only if f can be represented in the following way:

5 10 10

f={(g0.21.22)[1 4

5
6 3
0o 1 2 1
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1
Jor numbers g; > 0 satisfying go =1, g¢» < (g1; )

To put it differently: The vector f has to be a certain non-negative linear combination of
the rows in the above matrix M.

Figure 5

5. The above theorem describes the f-vectors of simplicial (and, by duality, of simple)
4-polytopes. As indicated before, these lay in a way on the “boundary” of Fy. In the
remaining part of this overview we now shall report about ongoing work concerning the
f-vectors of arbitrary 4-dimensional polytopes, so we are looking for “the rest of the
boundary’ and thus try to capture the “bulk™ of Fy.

As Kalai [7] has noted, “it seems that overall, we are short of examples. The methods for
coming up with useful examples (or counterexamples for commonly believed conjectures)
are even less clear than the methods of proving.” So let us start with a few examples of
4-polytopes. The figures, of a type known as “Schlegel diagrams”, will not be as intuitive
as one is accustomed to from 3-space. The f-vectors (fo, ..., f3) ofthe 4-simplex (Fig. 5,
left) and the 4-cube (Fig. 5, right) are easily seen to be (5, 10, 10, 5) (compare the first row
of the matrix M!) and (16, 32, 24, §), respectively. Then there is the “triangle x triangle”
(Fig. 6, left), with f-vector (9, 18, 15, 6), and its generalization, the “n-gon x n-gon”,
with f-vector (n?, 2a%, n* + 2n, 2n). In all dimensions there is the analogon of the octa-
hedron, called cross polytope and defined by X4 = {x € R? | [xq]| + ...+ |xg| < 1}.
The f-vector of X4 (Fig. 6, right) can, with some power of imagination, be read off as
(8, 24, 32, 16); by duality, this is the “reverse” of the f-vector of the 4-cube.

A rich set of examples is provided by the so-called cvclic polviopes. These are obtained
in the following way: Choose r points x; on the curve ¢ — (£, 12, t3, t*) (or on a similar
curve of degree 4) and let P be the convex hull of the x;. The x; will automatically be in
convex position (consider the projection to the first two coordinates), and also in general
position (this can be seen from Vandermonde determinants). Thus P has n vertices, and
it is simplicial. The remarkable observation is that any two vertices are connected by an
edge, so there are () edges. From this, one can derive the f-vector of P to be

2

2
ne—n ne —3n
G Pl _3, ).
(n 7 n 7
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Figure 6

We could also mention the stacked 4-polviopes, constructed as follows: Start with a 4-
simplex A4 =: Py, then recursively add pyramids over facets. This leads to a sequence
(P )n=0 of polytopes with f-vectors (5 + 3xn, 104 6n1, 10 441,54+ n).

What to make of all of this? On the one hand we know necessary conditions: Apart from
non-linear ones such as fo < % Jf3(f3 — 3), proven by Griinbaum [5], there are four linear
conditions, easy to derive, namely f1 > 2fo, f2 > 213, fo = 5, and f3 > 5. All of these
are tight for the f-vector f(Ay) = (5, 10, 10, 5) of the simplex, so they describe a cone
with this apex. On the other hand, all examples exhibited so far have f-vectorsin a smaller
cone with the same apex, spanned by the f-vectors of simplicial 4-polytopes (as given by
the g-theorem for d = 4) together with the f-vectors of simple 4-polytopes (which are
just the same vectors, “reversed”).

6. Because of the Euler-Poincaré relation (4) there are only three degrees of freedom in
the vectors f € Fj4. If we focus on the linear conditions that are tight at the f-vector of
the simplex, i.e., on the cone with apex f(A4) spanned by the f-vectors of 4-polytopes,
then there is one more direction in our four-dimensional “moduli-space” F4 that can be
factored out. One is lead to introduce the two “homogeneous™ quantities

fl — 10 f2 —10
¢ = —, = ———
Jo+ f3—10 Jo+ f3—10
which encode the size of the “middle coordinates™ f1 and f» of f, compared to fp and f3.
The latter can be controlled to some extent at the moment the polytope is defined either

as convex hull of finitely many points or as intersection of half-spaces. Fig. 7 shows the
domain of admissible (¢1, ¢2)-values, taking all so far established facts into account.

We now define the fatness ® of a 4-polytope by

Si+ f2—-20
Jo+ f3-10
The fatness of a polytope is large when it has many edges and 2-faces compared to the

number of its vertices and facets. Looking at some of the examples above we obtain the
following values:

=1+ 2=
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The 4-cube as well as its dual X4 have fatness ® = % = 2.57. The cyclic polytope with

n = § vertices has fatness ¢ = % = 2.67, while all stacked polytopes have the same

fatness % It can easily be shown that all simplicial or simple 4-polytopes have fatness

< 3, which is best possible for these polytopes. But there are polytopes with fatness larger
than that: The so-called “hypersimplex” with 30 vertices has fatness 4 and the famous
24-cell, invented by Schlifli, even fatness % = 4.526. As a matter of fact, in the last few

years a race for fatter and fatter polytopes has ensued.

In the light of these examples one hopes for general theorems. A lower bound is provided
by the following theorem by Kalai, 1987 [6]:

Theorem. All convex 4-polviopes P have fainess ©(P) > %

For results in the other direction explicit constructions are needed. In this regard one has
the following theorem by Sanyal and the first author, 2004 [13], 2007 [9]:

Theorem. Forr > 2 and even n > 4 there is a realization 5,’; C R? of the r-fold product
of n-gons C, C R?, such that all vertices, all edges, and all n-gon 2-faces of C', survive
an appropriate projection : R — R*,

As a corollary one obtains the fattest known 4-polytopes so far:

Corollary. There are convex 4-polyiopes (5,’;) with f-vector approximately proportional
10 (0,4, 5. 1) and fatness arbitrarily close io 9.

Is 9 the upper limit? We don’t know. Kalai was right: We are short of examples!



192

G.M. Ziegler and C. Blatter

References

(11

[2]

131

[4]
[5]

[o]
[71

[8]

9]

[10]

[11]
[12]

[13]

Bruggesser, H.; Mani, P.: Shellable decompositions of cells and spheres. Math. Scand. 29 (1971), 197-
205.

Descartes, R.: Exercices pour les éléments des solides. Ed. and transl. by Pierre Costabel, Presses Univer-
sitaires de France, 1987.

Eppstein, D.: Nineteen proofs of Euler’s formula V — E + F = 2. The geometry junkyard, http://
www.ics.ucl.edu/ " eppstein/junkyard/euler/

FPederico, P.J.: Descartes on polyhedra. A study of the ‘De Solidorum Elementis’. Springer, 1982.

Griinbaum, B: Convex polytopes. Vol. 221 of Graduate Texts in Mathematics, Springer, 2003. (Original
ed.: Interscience, 1967.)

Kalai, G.: Rigidity and the lower bound theorem, 1. Invent. Math. 88 (1987), 125-151.

Kalai, G.: Combinatorics with a geometric flavor. GAFA 2000 (Tel Aviv 1999). Geom. Funct. Anal.,
Special volume, part IT (2000), 742-791.

Koch, H.: Der Briefwechsel von Leonhard Euler und Christian Goldbach. Elem. Math. 62 (2007), 155—
166.

Sanyal, R.; Ziegler, G.M.: Construction and analysis of projected deformed products. Preprint, October
2007.

Schlafli, L.: Theorie der vielfachen Kontinuitit. Ziircher und Furrer, Ziirich, 1901. (Reprinted in: Ludwig
Schldfti, 1814-1895, Gesammelte Mathematische Abhandlungen, Vol. 1, 167-387. Birkhauser, 1950.)

Steinitz, E.: Uber die Eulerschen Polyederrelationen. Archiv fiir Mathematik und Physik 11 (1906), 86-88.

Steinitz, E.: Polyeder und Raumeinteilungen. Encyclopidie der mathematischen Wissenschaften. Band 3
(Geometrie), Teil 3AB12, 1-139. Teubner, 1922.

Ziegler, G.M.: Projected products of polygons. Electron. Res. Announc. Amer. Math. Soc. 10 (2004),
122-134, http://arXiv.org/abs/math/0407042.

Giinter M. Ziegler

Inst. Mathematics, MA 6-2

Techn. Universitit Berlin

D-10623 Berlin, Germany

e-mail; ziegler@math.tu-berlin.de

Christian Blatter

Albertus-Walder-Weg 16

CH-8606 Greifensee, Switzerland

e-mail: christian.blatter@math.ethz.ch



	Euler's polyhedron formula : a starting point of today's polytope theory

