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Mark B. Villarino obtained his B.A. in mathematics at the University of California,
Los Angeles. He later received a “Licenciatura” in mathematics at the University of
Costa Rica in San Jose, where he is currently a tenured member of the mathematics
faculty. His major interest is classical mathematics with emphasis to number theory,
Galois theory, analysis and approximations, and the history of mathematics.

1 Introduction
1.1 Regular polyhedra

Polyhedra have fascinated mathematicians for at least two and a half millennia. In
particular, the regular or platonic solids were used in Greek astronomy and philosophy in
addition to mathematics. Their beauty and symmetries have stimulated investigations that
even today are thriving. Our paper deals with a small but fundamental result in their theory.

A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and

straight line edges so arranged that every edge joins exactly two no more, no less) vertices
and is a common side of two faces.

A polyhedron is regular if all its faces are regular polygons with the same number of
sides) and all its vertices are regular polyhedral angles; that is to say, all the face angles

Eines der schönsten Ergebnisse der klassischen Raumgeometrie ist die Klassifikation
der regulären Polyeder. Es dürfte den meisten Lesern wohlbekannt sein, dass diese

Polyeder durch die fünf Platonischen Körper gegeben sind. Ein besonders eleganter

Beweis dafür kann mit Hilfe von Eulers Polyederformel gegeben werden. Weniger

bekannt ist möglicherweise die Klassifikation der sogenannten halbregulären
Polyeder, deren Oberfläche zwar auch aus regelmässigen Vielecken besteht, allerdings
können diese nun unterschiedliche Eckenzahlen aufweisen. Dieses Klassifikationsproblem

wurde bereits durch Archimedes gelöst: es führt auf die dreizehn halbregulären
Polyeder sowie auf die unendlichen Familien von Prismen und Antiprismen. Im
nachfolgenden Beitrag gibt der Autor einen elementaren Beweis dieses Resultats unter
Verwendung der Eulerschen Polyederformel.
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at every vertex are congruent and all the dihedral angles are congruent. An immediate
consequence of the definition is that all the faces of the polyhedron are congruent.

There are five such regular convex polyhedra, a fact known since Plato’s time, at least, and

all of Book XIII of Euclid is devoted to proving it, as well as showing how to construct
them: the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron.

1.2 Archimedean/semiregular polyhedra

It is reasonable to ask what happens if we forego some of the conditions for regularity.
Archimedes [1] investigated the polyhedra that arise if we retain the condition that the
faces have to be regular polygons, but replace the regularity of the polyhedral angles at

each vertex by the weaker condition that they all be congruent see Lines [6]). Such solids
are called Archimedean or semiregular polyhedra.

Theorem 1 Archimedes’ theorem). There are thirteen semiregular polyhedra as well as

two infinite families: the prisms and the antiprisms.

In the following paper we will prove Archimedes’ theorem by elementary topological
argumentsbased on Euler’s polyhedral formula see §2.2). After some simple introductory
lemmas the entire proof boils down to solving an inequality involving the number of sides
of the polygons that meet at each vertex by an exhaustive enumeration of cases see §4).

2 Proof techniques

2.1 Euclid’s proof for regular polyhedra

Euclid’s proof Proposition XVIII, Book XIII) is based on the polyhedral angle inequality:
the sum of the face angles at a vertex cannot exceed 2p, as well as on the fact that the

internal angle of a regular p-gon is p - 2p
p

Thus, if q faces meet at each vertex

q p -
2p
p < 2p 2.1.1)

p - 2)(q - 2) < 4 2.1.2)

p, q) 3,3), 4,3), 3, 4), 5, 3), 3, 5) 2.1.3)

which give the tetrahedron, cube, octahedron, dodecahedron, and icosahedron respectively.

Of course the key step is to obtain 2.1.2). Euclid does it by 2.1.1) which expresses a

metrical relation among angle measures.

One presumes that Archimedes applied more complex versions of 2.1.1) and 2.1.2) to

prove that the semiregular solids are those thirteen already listed. Unfortunately, his treatise

was lost over two thousand years ago!
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2.2 Euler’s polyhedral formula for regular polyhedra

Almost the same amount of time passed before somebody came up with an entirely new
proof of 2.1.2), and therefore of 2.1.3). In 1752 Euler [4] published his famous polyhedral

formula:
V -E + F 2 2.2.1)

in which V := the number of vertices of the polyhedron, E := the number of edges, and

F := the number of faces. This formula is valid for any polyhedron that is homeomorphic
to a sphere.

The proof of 2.1.2) using 2.2.1) goes as follows. If q p-gons meet at each vertex,

pF 2E qV 2.2.2)

qV qV
E F

2 p
2.2.3)

Substituting 2.2.3) into 2.2.1),

V -
qV
2 +

qV
p

2 2pV - qpV + 2qV 4p

V
4p

2p- qp + 2q
2 p- qp + 2q > 0 p - 2)(q - 2) < 4

which is 2.1.2).

This second proof proves much more. We have found all regular maps graphs, networks)
on the surface of a sphere whatever the boundaries may be, without any assumptions in
regard to they are being circles or skew curves. Moreover the exact shape of the sphere is

immaterial for our statements, which hold on a cube or any homeomorph of the sphere.

This topological proof of 2.1.2) is famous and can be found in numerous accessible
sources, for example Rademacher and Toeplitz [7].

2.3 Proofs of Archimedes’ theorem

Euclidean-type metrical proofs of Archimedes’ theorem are available in the literature see

Cromwell [2] and Lines [6]) and take their origin in a proof due to Kepler [5].

They use the polyhedral angle inequality to prove:

• at most three different kinds of face polygons can appear around any solid angle;

• three polygons of different kinds cannot form a solid angle if any of them has an

odd number of sides.

One then exhaustively examines all possible cases.

The situation is quite differentwith respect to a topologicalproof of Archimedes’ theorem.
Indeed, after we had developed our own proof, as presented in this paper, we were able to
find only one reference: T.R.S. Walsh [8] in 1972.
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His proof, too, is based exclusively on Euler’s polyhedral formula, and so there are overlaps

with ours. However, our proof is quite different, both in arrangement and details, and

in purpose. The pedagogical side is insisted upon in our proof so as to make it as
elementary and self-contained as possible for as wide an audience as possible. We comment
further on the structure of our proof in §4.

3 Three lemmas

For any polyhedron we define:

V:= total number of vertices;

Vp:= total number of vertices incident with p edges;

E:= total number of edges;

F:= total number of faces;

Fp:= total number of p-gonal faces.

Here, and from now on, polyhedron means any map on the sphere for which Euler’s theorem

holds.

3.1 Lemma 1

The following lemma is due to Euler [4] and is well-known. We sketch the proof for
completeness.

Lemma 1. The following relations are valid in any polyhedron:

1. 3F3 + 2F4 + F5 12 + 2V4 + 4V5 + · ·· + F7 + 2F8 + ·· ·

2. At least one face has to be a triangle, or a quadrilateral, or a pentagon; i.e., there
is no polyhedron whose faces are all hexagons, or polygons with six or more sides.

Proof For 1. we note

i) F3 + F4 + · · · + FV-1 F;

ii) 3F3 + 4F4 + · · · + V - 1)FV-1 2E;

iii) V3 + V4 + · · · + VF-1 V;

iv) 3V3 + 4V4 + ·· · + F - 1)VF-1 2E.

Now multiply i) by 6, subtract ii), and use iii), iv), and Euler’s formula.

For 2, observe that F3, F4, and F5 cannot all be zero in 1. at the same time.
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3.2 Definition of semiregular polyhedron. Lemma 2

Definition 1. A polyhedron is called Archimedean or semiregular if the cyclic order of the
degrees of the faces surrounding each vertex is the same to within rotation and reflection
([8]).

Lemma 2. In any Archimedean polyhedron:

1. rV 2E

where r edges are incident at each vertex.

2.
pFp

q
V

where q p-gons are incident at each vertex.

3. V
2

2 +
11- r

p1 +
1
p2 + · · · +

1
pr

where the pk are the degrees of the r polygons meeting at each vertex.

Proof For 1., since there are 2 vertices on any edge, the product rV counts each edge

twice, so is equal to 2E.
For 2., pFp counts the total numberof vertices once if one p-gon is incident at each vertex,
twice if two p-gons are incident there, q times if q p-gons are incident at the vertex.
That is, pFp qV.
For 3., solve 1. for E, use i) of the proof of Lemma 1.1, solve 2. for Fp, substitute in
Euler’s formula, solve for V, and write any fraction

q

p

1

p +
1

p + · · · +
1

p

q-times

3.3 Lemma 3

This lemma limits the number of candidate polygons surrounding each vertex.

Lemma 3. If r edges are incident with each vertex of an Archimedean polyhedron then

r 5.

Proof. By 3. of Lemma 2

1-
r
2 +

1

p1 + · · · +
1

pr
> 0

1

p1 + · · · +
1

pr >
r - 2

2
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But,

p1 3, p2 3, pr 3
1

3 +
1

3 + · · · +
1

3

1

p1 + · · · +
1

pr
>

r - 2

2

r
3 >

r - 2

2
r < 6 r 5.

4 The methodology of the topological proof

It is of interest to compare the method of proof, using Euler’s theorem, for the regular
polyhedra and the Archimedean polyhedra.

In both cases the essential step is to use the fact that the denominator of the formula for
the number of vertices, V, is positive:

V
2

1- r
2 +

r
p

regular,

V
2

2 +
11- r

p1 +
1
p2 + · · · +

1
pr

Archimedean.

In the case of the regular polyhedron the inequality

1-
r
2 +

r
p > 0

can be rearranged into the elegant inequality

p- 2)(r - 2) < 4,

which, as we saw before, leads to five solutions p,r
Unfortunately, in the case of the Archimedean polyhedra the inequality

1-
r
2 +

1

p1 +
1

p2 + · · · +
1

pr > 0

apparently does not lend itself to an algebraic rearrangement into a product, and so must
be studied by an exhaustive enumeration of cases.

Nevertheless, it is worth emphasizing that the basic structure of the two arguments is the
same at the core, although the elaboration of the cases in the Archimedean case demands
some topological counting arguments that are not entirely trivial see §5.2.1 and §5.3.1).

5 Topological proof of Archimedes’ theorem

By Lemma 3 we have to consider three cases:

Case 1: Five faces meet at a vertex: r 5.

Case 2: Four faces meet at a vertex: r 4.

Case 3: Three faces meet at a vertex: r 3.
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5.1 Case 1. Five faces meet at a vertex: r 5

By Lemma 3.2,

1 -
5

2 +
1

p1 +
1

p2 +
1

p3 +
1

p4 +
1

p5

2

V > 0

1

p1 +
1

p2 +
1

p3 +
1

p4 +
1

p5 -
3

2 > 0 5.1.1)

By Lemma 1.2, at least one of p1, p5 has to be 3, 4, or 5.

5.1.1 At least one face is a triangle: p1 3

Assuming p1 3,

1

p2 +
1

p3 +
1

p4 +
1

p5 -
3

2 +
1

3 > 0
1

p2 +
1

p3 +
1

p4 +
1

p5 -
7

6 > 0

Without loss of generality, we assume that:

3 p2 p3 p4 p5

1

3

1

p2

1

p3

1

p4

1

p5

1

3 +
1

3 +
1

3 +
1

p5 -
7

6 > 0

1

p5 -
1

6 > 0

p5 < 6

p5 5, 4, 3

p1, p2, p3, p4, p5) 3, p2, p3, p4, 5), 3, p2, p3, p4, 4), 3, p2, p3, p4,3).

However, if we take p2 3, p3 3, p4 4, p5 4, then

1

p1 +
1

p2 +
1

p3 +
1

p4 +
1

p5

1

3 +
1

3 +
1

3 +
1

4 +
1

4

3

2

and this contradicts 5.1.1). Therefore we are left with only three quintuplets:

p1, p2, p3, p4, p5) 3, 3, 3, 3, 5), 3, 3, 3, 3, 4), 3,3,3,3,3). 5.1.2)

These correspond, respectively, to the snub dodecahedron, the snub cube, and the icosahedron,

a regularpolyhedron. Using the C &R symbol [3] to abbreviate the above quintuplets
we are left with:

p1, p2, p3, p4, p5) 34.5 snub dodecahedron
34.4 snub cube
35 regular icosahedron

5.1.3)
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5.1.2 All faces have at least four sides: p1 4

It is easy to showthat p5 < 2 so that no possibilities exist.

5.2 Case 2. Four faces meet at a vertex: r 4

By Lemma 2.3,

1-
4

2 +
1

p1 +
1

p2 +
1

p3 +
1

p4
> 0

1

p1 +
1

p2 +
1

p3 +
1

p4 - 1 > 0.

Again, at least one of the pk must be 3, 4, or 5.

5.2.1 At least one face is a triangle: p1 3

We will write p, q, r instead of p2, p3, p4. Thus the inequality becomes

1

p +
1

q +
1

r -
2

3 > 0. 5.2.1)

We examine a typical polyhedron:

• it must have a triangle at each vertex;

• there must be 4 edges incident at each vertex;

• the vertices must all have the same configuration in the same order to within rotation
and reflection.

Consider Fig. 1. As we label the faces around each vertex of the triangle ABC, say
counterclockwise, from the vertex A, we see that the sequence 3, p, q,r at A, or its reflection
3,r,q, p), must repeat itself, in that order at B, and then at C. But CB is then an edge

of a polygon with r sides and with p sides simultaneously, i.e., we conclude that p r
This means that we are compelled to conclude that no matter how we label the vertices, at
least two of the p, q, r must be equal.

Here instead of using sides or angles to classify the polyhedral faces, one uses the number
of vertices or edges to classify the polygons.

Putting r p in the inequality 5.2.1), we obtain

2

p +
1

q -
2

3 > 0

p- 3)(2q - 3) < 9

1 < 2q - 3 < 9, 2q- 3) odd

2q - 3 3, 5, 7.

If 2q - 3 5 or 7 then p- 3 0, 1 resp. p 3, 4. Otherwise, if 2q - 3 3 then
p - 3 0, 1, 2 resp. p 3, 4, 5.
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r 3
q p

B

3
p

q
r

A

r

r p

3
p q
C

Fig. 1 Vertex constraint

Therefore, we obtain

p 3 3 3 4 4 4 5

q 3 4 5 3 4 5 3

Finally we observe that 2q- 3 9 is permitted if p- 3 0.

Therefore, we are left with:

p, q) 4,5) p1, p2, p3, p4) 3.4.5.4) small rombicosidodecahedron

p, q) 5,3) p1, p2, p3, p4) 3.5)2 icosidodecahedron
p, q) 4,4) p1, p2, p3, p4) 3.43 small rhombicuboctahedron

p, q) 4,3) p1, p2, p3, p4) 3.4)2 cuboctahedron
p, q) 3,3) p1, p2, p3, p4) 34 regular octahedron
p, q) 3,m) p1, p2, p3, p4) 33.m m 4) antiprism

5.2.2 All faces have at least four sides: p1 4

If we assume that 4 p1 p2 p3 p4, then

1

p1 +
1

p2 +
1

p3 +
1

p4 - 1 0.

Therefore p1 4 cannot happen.

There are no other cases with r 4.

5.3 Case 3. Three faces meet at a vertex: r 3

By Lemma 2.3,

1- 32 +
1
p1 +

1
p2 +

1
p3 > 0 1

p1 +
1

p2 +
1
p3 - 12 > 0

Since at least one of the pk must be equal to 3, 4, or 5, we consider each case separately.
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5.3.1 At least one face is a triangle: p1 3

Then,
1

p2 +
1

p3 -
1

6
> 0.

Looking at the configuration we see:

• each vertex has three edges incident to it,

• two are the edges of a triangle and the third of a p3-gonal face.

Labeling it we see that

p2 p3,

and therefore the above equality becomes

2

p3 -
1

6 > 0 p3 < 12, 3 p3 11.

Lemma 4. p3 is even or p3 3.

Proof We look at the configuration with p3 4. Since the vertices must all look alike, as

we traverse counterclockwise say) the p3 vertices of a p3-gonal face, we observe that the
edges of the face fall into two groups:

• those that are the common edge of two p3-gonal faces;

• those that are the common edge of a triangle and a p3-gonal face.

Moreover, they occur in adjacent pairs, and finally, as we completeone circuit and return to
our starting point, having started with a triangular edge, we end up with an edge common
to two p3-gonal faces. Thus we traverse an integral number of pairs of sides as we run
through the p3-gonal face once, i.e., p3 is even.

The only even numbers p3 between 3 and 11 are

p3 4, 6, 8, 10.

Therefore we obtain

p3 3 p1, p2, p3) 33 regular tetrahedron
p3 4 p1, p2, p3) 3.42 triangular prism
p3 6 p1, p2, p3) 3.62 truncated tetrahedron
p3 8 p1, p2, p3) 3.82 truncated cube

p3 10 p1, p2, p3) 3.102 truncated dodecahedron
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5.3.2 All faces have at least four sides and one exactly four sides: p1 4 p2 p3

Then,
1

4 +
1

p2 +
1

p3 -
1

2 > 0 p2- 4)(p3- 4) < 16.

The same sort of configuration argument shows that p2 and p3 are even, and we conclude

p1, p2, p3) 4.6.10) great rhombicosidodecahedron
p1, p2, p3) 4.6.8) great rhombicuboctahedron
p1, p2, p3) 4.62 truncated octahedron

p1, p2, p3) 43 cube

p1, p2, p3) 42.m m 4) prism

We note that this subcase covers precisely the polyhedra with bipartite graphs. Here the

vertex set V is the union of two disjoint sets V1 and V2, and each edge of the graph goes

from V1 to V2. Equivalently, each pk is even.1

5.3.3 All faces have at least five sides and one exactly five sides: p1 5 p2 p3

This is quite similar the the previous section. Since

5 p1 p2 p3
1

p2 +
1

p3 -
3

10 > 0 3p2 - 10)(3p3 - 10) < 100.

Again, a configuration argument shows that

p2 p3 3p2 - 2)2 < 100. 15 3p2 < 20 p2 5, 6,

which gives

p1, p2, p3) 53 regular dodecahedron

p1, p2, p3) 5.62 truncated icosahedron

And we have completed the topological proof of Archimedes’ theorem.

We have not demonstrated that the polyhedra enumerated in Archimedes’ theorem are in
fact constructible. Again, this is done in the works of Cromwell [2] and Lines [6].

6 Finalremarks
As in the case of the topological proof that there are five regular polyhedra, we have proven
much more! We have found all semiregular maps on any homeomorph of the sphere, a

result of great generality. Although the metric proofs are of great interest, intrinsically and

historically, the topological proof shows that they appeal to unessential properties of their
metric realizations and that, at the root of it all, Archimedes’ theorem is a consequence of
certain combinatorial relations among the numbers of vertices, edges, and faces.

One wonders what Archimedes would have thought of our proof of his theorem. We hope
that he would have liked it.

1We thank Michael Josephy for this observation.
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