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Introduction

We consider the following game between a questioner and a responder, first proposed by
Ulam [9]. (A variation of this game was independently proposed by Rényi, see [5].) Both
Rényi and Ulam were motivated by questions arising from communication over noisy
channels. The responder thinks of an integer x € {1,...,n} and the questioner must
determine x by asking questions whose answer is “Yes’ or ‘No’. The responder is allowed
to lie at most k£ times during the game. Let gx(n) be the maximum number of questions
needed by the questioner, under an optimal strategy, to determine x under these rules. In
particular, Ulam asked for the value of ¢ (10%) (as this is related to the well-known ‘twenty
questions’ game). It follows from an observation of Berlekamp [1] that q1(106) > 25 and

Es wird ein Spiel mit den Spielern A und B betrachtet: A tiberlegt sich eine Zahl x
zwischen 1 und 10°. B will nun die Zahl x durch Fragen ermitteln, die von A mit ,ja"
oder ,.nein” beantwortet werden. Es ist leicht zu sehen, dass B mittels bindrer Suche
die Zahl x mit 20 Fragen herausfinden kann, 19 Fragen aber nicht immer ausreichen.
1976 fragte Ulam, was die von B benotigte Anzahl Fragen ist, wenn A einmal eine
falsche Antwort geben dart. Pelc zeigte 1990, dass B den Wert von x mit 25 Fragen
ermitteln kann. Berlekamp hatte zuvor beobachtet, dass 24 Fragen nicht immer ausrei-
chen. Die Autoren geben in diesem Artikel einen kurzen Beweis fiir das Ergebnis von
Pelc und betrachten auch etwas allgemeinere Fragestellungen, Die Motivation fiir die
Untersuchung dieses Spiels kommt aus der Kodierungstheorie.
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Rivest et al. [6] as well as Spencer [7] gave bounds which imply that ¢1(10%) < 26.
Pelc [4] was then able to determine g1 (n) exactly for all n:

Theorem 1 ([S]) For even n € N, g1(n) is the smallest integer g which satisfies n <
29/(g + 1). Foroddn € N, q1(n) is the smallest integer q which satisfiesn < (29 — g +
/(g + 1.

In particular, his result shows that the lower bound of Berlekamp for n = 10° was correct.
Shortly afterwards, Spencer [7] determined gx (n) asymptotically (i.e. for fixed k and large
n). The values of qk(106) have been determined for all k. These and many other related
results are surveyed by Hill [3], Pelc [5] and Cicalese [2]. Here, we give a simple strategy
and analysis for the game with at most one lie which implies the above result of Pelc for
many values of 7.

Theorem 2 [fn < ot 947 (g + 1) for some integer £, then the questioner has a Strategy
which identifies x in g questions if at most one lie is allowed. In particular, g1(n) < q.

Below, we will give a self contained argument (Proposition 3) which shows that if # also
satisfies n > 2971/g, then the strategy in Theorem 2 is optimal. This implies that the
bound in Theorem 2 is optimal if n = 2* for some £ € N, More generally, Theorem 1
implies that for even n, Theorem 2 gives the correct bound if and only if we can find
a binary power 2¢ with n < 2% < 29/(g + 1), where g is the smallest integer with
n < 2%/(g + 1). (Similarly, one can read off a more complicated condition for odd n as
well.) In particular, if n = 10°, we obtain g1 (10°%) = 25. To check this, note that for
g = 25 and £ = 20, we have

12971 /41 = 671088 < n < 1048576 = 2¢ < 1290555 = [29/(q + 1)].

If one compares the bounds from Theorems 1 and 2, then one can check that the small-
est value where the latter gives a worse bound is n = 17, where Theorem 2 requires 9
questions whereas ¢1(17) = 8. The smaller values are ¢1(2) = 3, g1(3) = g1(4) = 5,
G1S)y=...=q18) =6and 1 (%) = ... =q1(16) =17.

More generally, it is easy to see that for any # the strategy in Theorem 2 uses at most
two questions more than an optimal strategy. Indeed, given n, let £ and ¢ be the smallest
integers satistying n < 2¢ < 22/(g + 1). So Theorem 2 implies that ¢ questions suffice.
Proposition 3 implies that if n > 2273 /(g — 2), then any successful strategy needs at
least ¢ — 2 questions in the worst case. To see that n > 2973 /(g — 2), suppose that this
is not the case. Then by assumption on £ we have 271 < n < 2973/(g — 2). So if
q > 4 (which we may assume in view of the above discussion of small values), we have
28 < 2972 /(g —2) < 297 '/4. This contradicts the choice of g.

Our proof of Theorem 2 uses ideas from Cicalese [2] and Spencer [8]. It gives a flavour
of some techniques which are typical for the area. Elsholtz (personal communication) has
obtained another short proof for the case n = 10°. Throughout, all logarithms are binary.
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From now on, we consider only the game in which at most one lie is allowed. For the
purposes of the analysis, it is convenient to allow the responder (o play an adversarial
strategy, i.e. the responder does not have to think of the integer x in advance (but does
answer the questions so that there always is at least one integer x which fits all but at most
one of the previous answers). The questioner has then determined x as soon as there is
exactly one integer which fits all but at most one of the previous answers. We analyze the
game by associating a sequence of states (a, b) with the game. The state is updated after
each answer. The variable a denotes the number of integers which fit all previous answers,
and b is the number of integers which fit all but exactly one answer. So initially, @ = # and
b = 0. The questioner has won as soon as ¢ + b < 1. If there are j questions remaining in
the game and the state is (a, b), then we associate a weight w;(a, b) := (j + 1)a + b with
this state. Also, we call the integers which fit all answers but exactly one pennies (note
that each of these contributes exactly one to the weight of the state).

For completeness, we now give a proof of the lower bound mentioned in the introduction.
As mentioned above, the fact is due to Berlekamp [1], see also [2, 4, 6] for the argument.
The proof has a very elegant probabilistic formulation which generalizes more easily to
the case of £ > 1 lies (see Spencer [§]).

Proposition 3 Ifn > 29 —1 /q, then the questioner does not have a strategy which deter-
mines x with g — 1 questions.

Proof. Note that our assumption implies that the initial weight satisties w,—1(n,0) >
29-1 1t is easy to check that before each answer, the sum of the weights of the two
possible new states {dyes, Dyes) and (a@no, bno) is equal to the weight of the current state
(a,b),ie.

wj(a, by = wj_1(dyes, byes) + w;—1{no, bno)- (D
To see this, observe that @ = dyes + dno and a + b = byes + bno and substitute this into the
definition of the weight functions. (1) implies that the responder can always ensure that
the new state (¢’, b") (with j questions remaining) satisfies

wi(@, V) = wjg1(a, b)/2 = wg_1(n, 002747171 5 2], (2)

Thus the responder can ensure that the final state has weight greater than one. We also
claim that this game never goes into state (1,0). (Together, this implies that the final
state consists of more than one penny, which means that the responder wins). To prove the
claim, suppose that we are in state (1, 0) with j — 1 questions remaining. Then the previous
state must have been (1, ) for some ¢ > 0. Note that (2) implies that w;(1,1) > 27, On
the other hand, the assumption on the strategy of the responder implies that w;—1(1,0) >
w;—1(0, 1). Combined with (1), this means that w;(1,1) = w; _1(1,0) + w;—1(0,1) <
2wi—1(1,0)=2j.But2j < 27 has no solution for j > 1, and so we have a contradiction.

U

Proof of Theorem 2

Note that the weight of the initial state is wy (1, 0) = n(g+1) < 29. By making » larger if
necessary, we may assume that logn = £, for some £ € N, So £ < g —log(g + 1). Since
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£ € N, this implies
£ < g —[loglg + D. (3

Consider each integer < 2° in its binary form, i.e. we have 2¢ strings of length £. The
questioner performs a binary search on these numbers by asking questions of the form
‘Is the value of x in position i a 17°. The binary search on the search space {1,...,n}
uses exactly £ questions and as a result we obtain £ + 1 possible numbers for x: There
is exactly one integer which satisfies all the answers, and there are also £ integers which
satisfy all but one answer. Therefore, after the binary search has been performed we are in
state (1, £). Moreover, wy—¢(1,£) =1-(g — ¢+ 1)+ £-1=qg+ 1.

Let p = g — £. By (3), it now suffices to identify x within p := [log(g + 1)] questions.
Note that the weight of the state satisfies 27~ < w,_(1, £) <27, Suppose thatg + 1 is
not a power of 2. It is easy to see that we can add pennies to the state until the total weight
is equal to 27, as the addition of pennies will only make the game harder for the questioner.
Suppose that we now have r pennies in total, so we obtain the new state P* = (1, r), with
r > £, where the weight of P* equals 2#. Thus

p+1+r:wp(1,r):2p. €Y
We now have two cases to consider:

Case 1: If r < p + 1, then (4) implies that p + 1 > 2771, which holds if and only if
p < 2. This means that we have one nonpenny and at most two pennies. It is easy to see
that the questioner can easily identify x using two more questions in this case.

Case 2: Suppose 7 > p+ 1. This implies that 22~! > p+1 and thus p > 2. We know that
the total weight of this state is even and so we wish to find a set, say Ap, such that when a
question is asked about it, regardless of the responder’s reply, the weight is exactly halved.
Assume that A, contains the nonpenny and y pennies and that the weight of A, is equal to
2P~1. Suppose that the answer to ‘Is x Ap?7 is “Yes’. Then the weight of the resulting
state is p + vy (since we are left with one nonpenny of weight p and y pennies). If the
answer is ‘No’, the resulting state has weight r + 1 — v (since the nonpenny has turned into
a penny and the y pennies have been excluded). Thus we wish tosolver +1—y = p+ v,
which gives

1
y:z(r—kl—p). (5

Note also that (4) implies r + 1 — p is even and so v is an integer. Moreover, the condition
r > p—+ 1implies thaty > 1.

So suppose that the questioner chooses A as above and asks ‘Isx € A,7". Ifthe responder
replies ‘Yes’, we obtain a position P’, which consists of one nonpenny and vy pennies,
i.e. P’ = (1, y), which has weight gh—l If p — 1 =2, then by Case 1, the questioner can
easily identify x. If p — 1 > 2, we redefine r such that » := y and then calculate the new
value of ¥ by (5), to obtain a new set A,_1. The questioner continues inductively with
Ap_q instead of A, so the next question will be ‘Is x € A,_17°. If the responder replies
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‘No’ to the original question ‘Is x € A,?" then we obtain a position P’ which consists
only of pennies, i.e. P’ = (0,7 — v + 1). Again, this has weight 27~!. Since we have
p — 1 questions remaining we perform a binary search on the 7 — vy — 1 = 227! pennies
remaining and after p — 1 questions we will have identified x.

Note that eventually, the answer to the question ‘Is x € A;?7” must be either ‘No” or it is
‘“Yes” and we have i — 1 = 2 as well as a new weight of 2/~! (in which case there are 2
questions and at most one nonpenny and two pennies remaining). By the above arguments,
the questioner can find the integer x in the required total number g of questions in both
cases, which completes the proof of the theorem. O

In case n = 109, the above strategy would mean that after 20 questions, we would be
in state (1, 20) and have weight ws(1,20) = 26. Our aim is to find x within 5 more
questions. We add 6 pennies to obtain the state (1, r) with r = 26 and weight 27, where
p = 5. Thus (5) gives y = 11. So As consists of the nonpenny and 11 pennies. If the
answer is “Yes’, then A4 consists of the nonpenny and 4 pennies. If the answer is ‘No’, we
have 16 pennies left and can find x after 4 more questions by using binary search.
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