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1 Introduction
Throughout this article, we let [x] denote the integer part of a given real number x; also,

we let pn)n.N
denote the sequence of all prime numbers and we set pn := pn+1 - pn

for any n N. Further, if A is a subset of R and x is a real number, we will let A + x
denote the subset of R defined by A + x := {a + x | a A}.
In [4], Mills proved the existence of an absolute constant A > 1 forwhich [A3n] is a prime
number for any positive integer n and in [6], Wright proved the existence of an absolute
constanta > 0 for which the infinite sequence [a], [2a], [22a ], is composed of prime
numbers. Let us describe the method used by these two authors. They start from an upper
bound for pn as a function of pn. Such an upper bound allows to construct an increasing
function h more or less elementary, according to the used upper bound of pn) such that

Ein klassisches Problem der Zahlentheorie ist die Suche nach einfachen Formeln zur
Erzeugung von Primzahlen. So bewies W.H. Mills im Jahr 1947, dass eine Konstante
A > 1 existiert, so dass die natürliche Zahl [A3n ] für alle positiven natürlichen Zahlen
n eine Primzahl ist; hierbei bedeutet [x] den ganzzahligen Anteil der reellen Zahl x.
Vier Jahre später wies der Zahlentheoretiker E.M. Wright die Existenz einer Konstantena

> 0 nach, so dass die Folge [a], [2a],[22a ], aus lauter Primzahlen besteht. In
dem nachfolgendenBeitrag gelingt es dem Autor, unter der Annahme der Cramérschen
Vermutung zu vorgegebenem. > 1 jeweils eine reelle Zahl A A( > 1 zu
konstruieren, so dass die Grösse [An.] für alle n N, n > 0, eine Primzahl ist. Das
Interessante an dieser Konstruktion ist, dass die auf diese Weise erzeugte Primzahlfolge
deutlich langsamer als die von Mills und Wright gegebenen Folgen wächst.
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between any two consecutive terms of the sequence h(n))n, there is at least one prime
number. Setting fn := h h where h is applied n times), they deduce from the
last fact, the existence of a real constant A for which the sequence ([ fn(A)])n consists of
prime numbers.

With this method, Wright used the upper bound pn pn, which is nothing else than

Bertrand’s postulate, and Mills used Ingham’s upper bound pn p5/8+e
n which is valid

for any n sufficiently large depending on the given e > 0. The functions h, which are

derived from these upper bounds, are h(x) 2x for Wright and h(x) x3 for Mills.
Then, the theorems of [4] and [6] follow.

Notice that the more the upper bound of pn is refined, the more the function h will
be smaller and the more the obtained sequence of prime numbers will grow slowly for
instance, the sequence of Mills grows more slowly than Wright’s one). From this fact, in
order to have a sequence of prime numbers which grows even more slowly, we must use

more refined upperbounds for pn. But up to now even the powerful Riemann hypothesis

gives only the estimate pn O( p1/2
n log pn). A famous conjecture which is a little

too strong compared with the last estimate) states that between two consecutive squares,

there is always a prime number see [2]). So, according to this conjecture, the function
h(x) x2 is admissible for the method described above, which permits to conclude the
existence of a constant B > 1 for which [B2n ] is a prime number for any positive integer
n. We thus obtain assuming this conjecture), a sequence of prime numbers growing more
slowly than Mills’ one.

Based on heuristic and probabilistic arguments, Cramér [1] was led to the conjecture that
pn O(log2 pn); note that it is known that pn O(log pn) cannot hold see [5]).

Thus, by taking for the method described above h(x) c log2 x c > 0), we obtain
via Cramér’s conjecture) sequences of prime numbers having an explicit form and growing

much more slowly than Mills’ one. The inconvenience of this application is that the
explicit form in question [ fn(A)] is not elementary, because fn does not have a simple
expression as a function of n.

To overcome this problem, we were led to generalizeMills’ methodby considering instead
of one function h, a sequence of functions hm)m and, hence, in this situation fn is rather
the composition of n functions h0, hn-1. This allows to give for fn the form which we

want, and if we set hn := fn+1 f -1
n we have only to check whether it is true that for any

n and any x sufficiently large relative to n), the interval [hn(x), hn(x + 1) - 1[ contains
at least one prime number or not. In the affirmative case, we will deduce the existence
of a real number A for which the formula [ fn(A)] gives a prime number for any positive
integer n see Theorem 1 and its proof).

Under a conjecture weaker than Cramér’s one, we derive from this generalization two new
types of explicit formulae giving prime numbers. We also give other applications of our
main result outside the subject of prime numbers) and we conclude this article by some
open questions related to the results which we obtain.
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2 Results
The main result of this article is the following theorem.

Theorem 1 Let I =]a, b[ with a,b R, a < b) be an open interval of R, n0 a
nonnegative integer and fn)n=n0 a sequence of real functions, which are differentiable and
increasing on I
Assume that the functions f

n+1/ f n n n0) are non-decreasing on I and that for all
x I the sequence fn(x))

n=n0 is increasing. Further assume that there exists a real
function g, non-decreasing on R and verifying

g fn+1)(x)
f
n+1

fn
x) n n0, x I 1)

Then, for any sequence of integers un)n, verifying limsup

n.+8
un +8,

un+1 - un g(un)- 1 n n1), 2)

and for which at least one of the terms un belongs to fn0 I n fn0 I - 1), there exists a
real A I for which the sequence ([ fn(A)])n=n0 is an increasing subsequence of un)n.

Proof By shifting, if necessary, the sequence of functions fn)
n=n0 we may assume that

n0 0 and by shifting, if necessary, the sequence un)n, we may assume that we have

un+1 - un g(un)- 1 n N). 2

We begin the proof by some remarks and preliminary notations which allow to simplify
the situation of the theorem.

Since the function fn for given n N is assumed to be differentiable hence continuous)
and increasing on I =]a, b[, it is a bijection from I onto fn(I =].n,µn[, where .n :=
lim fn(x) and µn := lim
x.a x.b

fn(x) .n and µn belong to R). Now, let us introduce the

following functions

hn : ].n, µn[-. ].n+1, µn+1[ defined by hn := fn+1 f -1
n n N).

Since the functions fn and fn+1 for given n N, are differentiable and increasing on I
the function hn is differentiable and increasing on ].n, µn[. Further, the hypothesis of the
theorem concerning the growth of the sequence fn(x))n x I amounts to

hn(x) > x n N, x ].n, µn[ 3)

Next, let us show that for any n N, the function hn is convex on ].n, µn[. To do this,
we check that the derivative hn n N) is non-decreasing on the interval ].n,µn[. Given
n N, we have

h n fn+1 f -1

n f -1
n · f

n+1 f -1
n

f
n+1 f -1

n

nfn f -1

f
n+1

fn
f -1
n

Since the function fn+1/ fn is non-decreasing on I and the function f -1
n is increasing

on fn(I =].n, µn[ the function hn as a composite of two non-decreasing functions), is

non-decreasing on ].n, µn[. So the function hn is effectively convex on ] .n,µn[.
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The rest of the proof consists of the following three steps:

1st Step: We are going to show that we have

g hn)(y) hn(y + 1)- hn(y) n N, y .].n,µn - 1[). 4)

In fact, we will see later that the interval ].n, µn - 1[ is never empty. Let n N and
y .].n, µn - 1[ be fixed and set x := f -1

n y). The convexity of hn on ].n, µn[, proved
above, implies that we have

hn(u) hn(t)(u - t) + hn(t) t,u .].n, µn[).

By taking in this last inequality t y and u y + 1, we obtain

hn(y + 1)- hn(y) hn(y)

f
n+1

fn
x) because hn

f
n+1

fn
f -1

n y)n and x f -1

g fn+1)(x) from hypothesis 1) of the theorem)

g fn+1 f -1
n y)

g hn)(y).

The relation 4) now follows.

2nd Step: We are going to construct an increasing sequence kn)
n.N

of non-negative
integers such that the subsequence of un)n with general term vn ukn satisfies

vn ].n,µn - 1[
hn(vn) vn+1 < hn(vn + 1)- 1

n N).

We proceed by induction as follows:

• We pick k0 N such that uk0 f0(I n f0(I - 1) =].0, µ0 - 1[. Notice that the
existence of such an integer k0 is a hypothesis of the theorem.

• If, for some n N, an integer kn N is chosen such that ukn .].n,µn - 1[, let

Xn := k N | k > kn and uk hn(ukn

From the hypothesis limsupn.+8 un +8, the subset Xn of N is non-empty, it thus

admits a smallest element which we call kn+1. So, we have

kn+1 > kn, ukn+1 hn(ukn and kn+1 - 1 Xn.

We claim that the facts “kn+1 > kn” and “kn+1 - 1 Xn” imply

ukn+1-1 < hn(ukn 5)
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Indeed, either kn+1 kn + 1, in which case we have ukn+1-1 ukn < hn(ukn from
3), or kn+1 > kn + 1, that is kn+1 - 1 > kn. But since kn+1 - 1 Xn, we must have

ukn+1-1 < hn(ukn as required. It follows

ukn+1 ukn+1-1 + g(ukn+1-1) - 1 from 2

< hn(ukn + g hn)(ukn - 1 using 5) and since g is non-decreasing)

hn(ukn + 1)- 1 from 4)).

Hence, we have

ukn+1 < hn(ukn + 1)- 1,

and thus
hn(ukn ukn+1 < hn(ukn + 1)- 1.

Since the function hn takes its values in ].n+1, µn+1[, the last inequality shows that

ukn+1 .].n+1, µn+1 - 1[. This ensures that the induction process works and gives the
required sequence kn)n. Notice also that the subsequence vn)n of un)n, which we have
just constructed, is increasing because we have vn+1 hn(vn) > vn by 3) for any n N.

3rd Step: To conclude the proof, we will show the existence of a real A I, for which
we have vn [ fn(A)] for any n N. To do this, we introduce two real sequences xn)n

and yn)n, with elements in I which we define by

xn := f -1
n vn) and yn := f -1

n vn + 1) n N).

Since the functions fn are increasing, we have xn < yn for all n N. We claim that the
sequence xn)n is non-decreasing and that the sequence yn)n is decreasing. Indeed, for
any n N, we have

n vn) f -1
xn f -1

n+1 hn)(vn) f -1

n+1(vn+1) xn+1

and

n vn + 1) f -1
yn f -1

n+1 hn)(vn + 1) > f -1

n+1(vn+1 + 1) yn+1.

In these last relations, we have just used the facts that f -1

n+1 is increasing and hn(vn)

vn+1 < hn(vn + 1)- 1. The intervals [xn, yn] n N) are thus nested intervals of R.
Consequently, their intersection is non-empty according to Cantor’s intersection theorem.
Pick A an arbitrary real number belonging to this intersection, i.e., xn A yn for all
n N, in particular A I In fact, A verifies even

xn A < yn n N),

because if A ym for some m N, we will have, since the sequence yn)n decreases,

A > ym+1, contradicting the inequality A ym+1. It follows from the growth of the
functions fn that we have

fn(xn) fn(A) < fn(yn) n N),
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that is
vn fn A) < vn + 1 n N).

Then, since vn is an integer for all n N, we conclude

[ fn(A)] vn n N).

This completes the proof.

Remarks. Mills’ theorem [4] can be recovered by applying Theorem 1 for I =]1,+8[,
n0 0, fn(x) x3n n N, x I g(x) x2/3, if x > 0 and g(x) 0, if x 0,

and un)n the sequence of prime numbers. In this application, we check relation 1) of
Theorem 1 by simple calculus and we deduce relation 2) from Ingham’s estimate quoted
in the introduction. The remaining hypotheses of Theorem 1 are immediately verified.

Wright’s theorem [6] can also be recovered, by applying Theorem 1 for I =]0,+8[,
n0 0, fn)n the sequenceof functionswhich is defined on I by f0 IdI and fn+1 2 fn

n N), g(x) log 2)x x R), and un)n the sequence of prime numbers. In order to
check relation 1) of Theorem 1, note that we have fn+1/ f n log 2) fn+1 for any n N.
Relation 2) is a consequence of the prime number theorem, but it can be obtained by using
elementary arguments due to Chebyshev see [3]). The remaining hypothesis of Theorem
1 is immediately verified.

N.B. In the above two applications of Theorem 1, the sequence of functions hn)n
introduced in the proof is constant. Indeed, for the first application, we have hn(x) x3

n N) and for the second one, we find hn(x) 2x n N). As explained in the
introduction, the possibility of taking hn)n not constant is the crucial point of our approach. In
the following, we are going to give some applications of Theorem 1 in which the sequence

hn)n is not constant. If we admit the followingconjecture which is weaker than Cramér’s
one [1]), we obtain two new types of explicit sequences of prime numbers, which grow
much more slowly than the ones of Mills andWright.

Conjecture 2 There exists an absolute constant k > 1 such that

pn O log pn)k

Under this conjecture, we obtain by applying Theorem 1, the following two corollaries.

Corollary 3 Assuming Conjecture 2, there exists for all real numbers. > 1, a real number

A A( > 1, for which the sequence ([An. ])n=1 is an increasing sequence of prime
numbers.

Proof. Let > 1 be fixed, k > 1 an admissible constant as in Conjecture 2, and a > 1 a

real number such that

logx)k+1 x1/2 x > a), 6)

n + 1)k+1 an.-1/2 n 1). 7)

Such an a exists because

log x)k+1/x1/2 0 and limlim
x.+8 n.+8

n + 1)2(k+1)/n.-1
1.
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We apply Theorem 1 for I =]a,+8[, n0 1, fn(x) xn. n 1, x I g(x)
logx)k+1, if x > 1, and g(x) 0, if x 1, and un)n the sequence of prime numbers.

Let us check the hypotheses of Theorem 1.

The functions fn are clearly increasing and differentiable on I. We have fn x) n.xn. -1,

therefore
f
n+1

fn
x)

n + 1

n
x(n+1) -n. n 1, x I

We thus see that the functions f
n +1/ fn n 1) are non-decreasing on I. Further, if x

is a fixed real in I the sequence fn(x))n=1 is clearly increasing. Now, we have for any
integer n 1 and for any real x I :

g fn+1(x) n + 1) k+1)(log x)k+1

a.n.-1/2x1/2 from 6) and 7))
x.n.-1

because x > a and .n.-1 > 1)

x(n+1) -n. because .n.-1 n + 1) - n.
f
n+1

fn
x).

Relation 1) of Theorem 1 now follows. Next, relation 2) of Theorem 1 follows immediately

from Conjecture 2. Finally, fn0 I)n( fn0 I)-1) =]a,+8[ contains prime numbers
as large as we want. The hypothesis of Theorem 1 are thus all satisfied, so we can apply
this latter to the present situation. Corollary 3 follows from this application.

Corollary 4 Assume that Conjecture 2 is true and let k > 1 be an admissible constant
in this conjecture. Then, for any positive real number e, there exists an integer n0
n0(e, k) 1 and a real number B B(e, k) > 0 such that the sequence ([B · n!k+e

])n=n0

is an increasing sequence of prime numbers.

Proof. Let e be a fixed positive real number. From Conjecture 2 applied with the constant
k > 1), there exists a positive real number ck for which we have

pn+1- pn ck log pn)k n N). 8)

We apply Theorem 1 for I =]1,2[, n0 2 an integer depending on k and e) which we

pick large enough such that

ck k + e)(n + 1) log(n + 1) + log2)k

+ 1 n + 1)k+e n n0), 9)

and fn(x) n!k+ex n n0, x I g(x) ck(log x)k
+ 1, if x > 1, and g(x) 1,

if x 1, and un)n the sequence of prime numbers. In this situation, we can easily check
that the hypotheses of Theorem 1 are all satisfied. We just note that relation 1) follows
from 9), relation 2) follows from 8), and the last hypothesis of Theorem 1 concerning
the sequence un)n pn)n is a consequence of Bertrand’s postulate. Corollary 4 follows
from this application.



52 Bakir Farhi

Apart from the context of the prime numbers, we have the following

Corollary 5 Let un)n.N
be a sequence of integers such that

1 limsup

n.+8
un+1 - un) < +8.

Then, we have:

1) For any positive real number there exists a real number A > 1, for which the
sequence ([.An])n=1 is an increasing subsequence of un)n.

2) For any real number A > limsupn.+8(un+1 - un) + 1, there exists a positive
real number for which the sequence ([.An ])n=1 is an increasing subsequence of
un)n.

Some open problems related to the preceding study:

We ask with or without Cramér’s conjecture) the following questions:

1) Does there exist a real number A > 1 for which [An] is a prime number for every
positive integer n? This corresponds to the case 1 which is excluded from
Corollary 3.)

2) More generally than 1), does there exist a couple of real numbers A), with
> 0, A > 1, for which [.An ] is a prime number for every positive integer n?

This is related to Corollary 5.)

3) Does there exist a real number B > 1, for which [B · n!
2
] is a prime number for

every sufficiently large non-negative integer n? This is related to Corollary 4.)
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