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1 Introduction

The study of rings which are generated additively by their units seems to have arisen in
1953–1954 when Wolfson [13] and Zelinsky [14] proved, independently, that if V is a

finite or infinite dimensional vector space over a division ring D, then every linear
transformation is the sum of two nonsingular linear transformations unless dimV 1 and

Der folgende Beitrag behandelt eine Strukturfrage zur Theorie endlicher kommutativer

Ringe. Solche Ringe sind beispielsweise durch die Restklassenringe Z/nZ n N)
oder durch direkte Produkte solcher gegeben. Ein Element u eines kommutativen Ringes

R, das in R ein multiplikatives Inverses u-1 besitzt, wird Einheit genannt. Man
sagt, dass der Ring R durch Einheiten erzeugt ist, wenn sich jedes Element von R

als Summe von Einheiten darstellen lässt. In diesem Beitrag wird unter Verwendung
graphentheoretischer Methoden in elementarerWeise gezeigt, dass ein endlicher
kommutativer Ring R mit von 0 verschiedenem Einselement genau dann durch Einheiten
erzeugt ist, wenn es in R kein Ideal I mit Faktorring R/ I~= Z/2Z × Z/2Z gibt.
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D Z2. This implies that the ring of linear transformations EndD(V is generated
additively by its units. In fact, every element of EndD(V) is the sum of two units except
for one obvious case when V is a one dimensional vector space over Z2. Wolfson’s and

Zelinsky’s result caused quite a bit of interest in the study of rings that are generated by
their units.

In 1958, Skornyakov [8, p. 167, Problem 31], posed the problem of determining which
regular rings are generated by their units. More precisely, he asked: Is every element of a
von Neumann regular ring, which cannot have Z2 as a quotient, a sum of units? – This
question of Skornyakov was answered negatively by Bergman in 1977 see [5] which is a

significant contribution to the theory of von Neumann regular rings). Bergman constructed
a von Neumann regular algebra in which not all elements are sums of units.

In 1968, while apparently unaware of Skornyakov’s book, Ehrlich [2] produced a large
class of regular rings generated by their units. He proved that if R is a ring such that 2 is a

unit and for every a R there exists a unit u R such that aua a, then every element
of R is the sum of two units.

In 1974, Raphael [7] launched a systematic study of rings generated by their units, which
he calls S-rings.

Finally, in 1976, Fisher and Snider [3] proved that if R is a von Neumann regular ring with
primitive factor rings artinian and 2 is a unit, then every element of R can be expressed as

the sum of two units.

In 1998, Wolfson’s and Zelinsky’s result was reproved by Goldsmith, Pabst and Scott
where they remarked that this result can hardly be new but they were unable to find any
reference to it in the literature see [4]). Interest in this topic increased recently after they
defined the unit sum number in [4].

For additional historical background the reader is referred to the paper [10], which also
contains references to recent work in this area. Also see [9] for a survey of rings which are

generated by their units.

The purpose of this note is to give an elementary proof of Theorem 1.1. The proof uses

graph theory, and offers, as a byproduct, that if R is a finite commutative ring with nonzero
identity which is generated by its units, then every element of R can be written as a sum

of at most three units.

Theorem 1.1 ([7, Corollary 7]). Let R be a finite commutative ring with nonzero identity.
Then R is generated by its units if and only if R cannot have Z2 × Z2 as a quotient.

2 Basic notation and properties of graphs

In this section we introduce some notation and definitions of graphs that will be used

throughout the note. We also state and prove Lemmas 2.1 and 2.2 which are required
in Section 3. Here, by a graph G we mean a finite undirected graph without loops and

multiple edges unless otherwise specified). The reader is referred to [1] and [12] for a

fuller treatment of the subject.

For a graph G, let V(G) denote the set of vertices. Let G be a graph and suppose x, y

V G). We recall that a walk between x and y is a sequence x v0, e1, v1, ek, vk y
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of vertices and edges of G, denoted by

x v0
e1-. v1 -. ek-. vk y,

such that for every i with 1 i k, the edge ei has endpoints vi-1 and vi. Also a path
between x and y is a walk between x and y without repeated vertices. The number of
edges in a walk counting repeats) or a path is called its length.

For the proof of Theorem 1.1 we need the following well-known fact. We state and prove
it here for the convenience of the reader.

Lemma 2.1. Let x and y be distinct vertices of a graph G. If there is a walk between x

and y then there is also a path between x and y.

Proof. By assumption there is a walk between x and y and so we may select a walk

W : x v0
e1

-. v1 -.
ek

-. vk y

of minimal length k between x and y. If W is not a path, select a vertex that appears twice,
say vi vj where i < j Consider

W : x v0
e1-. v1 -. ei-. vi

e
j+1-. vj+1 -. ek-. vk y.

Then W is a walk between x and y with length shorter than k, a contradiction. Therefore
W is a path between x and y.

A graph G is called connected if for all vertices x and y there exists a path between x and

y. Otherwise, G is called disconnected.

A bipartite graph is one whose vertex-set is partitioned into two not necessarily
nonempty) disjoint subsets, called parts, in such a way that the two end vertices for each

edge lie in distinct parts. Among bipartite graphs, a complete bipartite graph is one in
which each vertex is joined to every vertex that is not in the same part.

Let G1 and G2 be two vertex-disjoint graphs. The category product of G1 and G2 is

denoted by G1×G2. That is, V(G1×G2) := V G1)×V(G2); two distinct vertices x, y)
and x y are adjacent if and only if x is adjacent to x in G1 and y is adjacent to y in G2.

We now state and prove the following lemma which will be used in the proof of Theorem

1.1. A bipartite graph is nontrivial if both parts of its vertex set are nonempty. For
more information on this lemma we refer the reader to [11].

Lemma 2.2. Let G1 and G2 be two bipartite graphs at least one of which is nontrivial.
Then G1×G2 is disconnected.

Proof. We assume that G2 is nontrivial. Thus G1 is partitioned into two disjoint subsets

X1 and Y1 as well as G2 into two disjoint subsets X2 and Y2 in such a way that |X1| 1,

|X2| 1 and |Y2| 1. Choose a X1, b X2 and c Y2. We claim that there is no path
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between a, b) and a,c) in G1×G2. In order to do this, suppose in contrary that, there is
a path P between a, b) and a, c) in G1×G2:

P : a,b)
e1-. a1, b1)

e2-. a2,b2) -. en-1-. an-1, bn-1)
en-. a, c).

We now obtain the walk Ŵ in G1 and the walk W̃ in G2 both with length n:

Ŵ : a
ê1-. a1

ê2-. a2 -. ên-1-. an-1
ên

-. a,

W̃ : b
ẽ1-. b1

ẽ2

-. b2 -. ẽn-1-. bn-1
ẽn

-. c.

The existence of the walk Ŵ implies that n is even while the existence of the walk W̃
implies that n is odd, a contradiction. Thus there is no path between a, b) and a,c) in

G1×G2, which implies that G1×G2 is disconnected.

Let us consider yet a few more definitions required for a complete understanding of the
next section. For a graph G and vertices x and y of G, the distance between x and y,
denoted by d(x, y), is the number of edges in a shortest path between x and y. If there is

no path between x and y then we write d(x, y) 8. We recall that the largest distance
among all distances between pairs of the vertices of a graph G is called the diameter of G
and is denoted by diam(G). Finally, for a given vertex x V G), the neighbor set of x is

the set NG(x) := {v V G) | v is adjacent to x}. Moreover, if G has a loop at vertex x,
then we always assume that x NG(x).

3 Proof of Theorem 1.1

In this section, using the results presented in Section 2, we are able to prove Theorem 1.1.

Let R be an arbitrary finite associative ring R with nonzero identity, say 1, which is
preserved by homomorphisms and inherited by subrings. Let UR be the set of units of R. We
attach a graph to R, denoted by GR, based on the elements and units of R. This graph
is obtained by letting R be the set of vertices and defining distinct vertices x and y to be

adjacent if and only if x + y UR. If we omit the word “distinct” in the definition of GR,
we obtain the graph GR; this graph may have loops. Note that if 2 /. UR, then GR GR.

The graphs in Fig. 1 are the graphs attached to the rings indicated.

It is easy to see that, for given rings R and S, if R~= S as rings, then GR~= GS as graphs.
Also we have GR×GS~= GR×S.

In Fig. 2 we illustrate these points for the direct product of the rings Z2 and Z3.

We need the following result, which is useful in the sequel.

Lemma 3.1. Let R be a finite commutative local ring with maximal ideal m. Then the
following statements hold:

a) If |R/m| 2, then GR is a complete bipartite graph.

b) If |R/m| > 2, then for every x, y R we have NGR x) n NGR y) Ø.
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Proof. Part a): Let X m and Y R \ m. We have V GR) X Y and X n Y Ø.
Therefore X and Y partition V GR) into two subsets. It is clear that no pair of distinct
elements of X are adjacent. We show that no distinct elements of Y are adjacent. In order
to do this, fix an element in R \ m, say a. By assumption we have R m m + a)
m m + (-a)). Now for distinct elements x and y in R \ m, we may write x m + a
and y m - a where m,m m. If x + y UR, then we conclude that m + m UR.
Therefore m has a unit element and so m R, a contradiction. Thus x + y /. UR, which
implies that x and y are not adjacent. Therefore no distinct elements of Y are adjacent.
Hence GR is a bipartite graph.

Suppose that x X and y Y are given. If x + y /. UR, then x + y X and so y X, a

contradiction. Thus x + y UR, which implies that x and y are adjacent. Therefore each

vertex of X is joined to every vertex of Y and so GR is complete bipartite.

Part b): By assumption we conclude that |UR| 2|R|/3. Suppose that x is an arbitrary
element of R and fix it. There are two possibilities: either 2x /. UR or 2x UR. If
2x /. UR, then GR has no loop at vertex x. On the other hand, for every element u - x,
where u UR, we have u - x x and u - x is adjacent to x in GR. This implies
that {u - x | u UR} NGR x) and so |NGR x)| |UR| 2|R|/3. If 2x UR,

then GR has a loop at vertex x. On the other hand, for every element u - x, where
u UR \ {2x}, we have u - x x and u - x is adjacent to x in GR. This implies that

{u - x | u UR \ {2x}} {x} {u - x | u UR} NGR x) and so we have again
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|NGR x)| |UR| 2|R|/3. Therefore, in both cases, we have |NGR x)| 2|R|/3.

Now, for every x, y R,

|NGR x) n NGR y)| |NGR x)| + |NGR y)|- |NGR x) NGR y)|

2|R|/3) + 2|R|/3)- |R|

|R|/3

> 0

and so NGR x) n NGR y) Ø as required.

Now let R be a finite commutative ring with nonzero identity and fix it. We want to prove
R is generated by its units if and only if R cannot have Z2 × Z2 as a quotient. We start
with the proposition below which contains a necessary and sufficient condition for GR to
be connected.

Proposition 3.2. GR is connected if and only if R is generated by its units.

Proof. Suppose thata R is written by the sum of some units and b R is adjacent
to a in GR. Therefore a+b UR and so wemaywrite b c- a, for some c UR. Thus
b is the sum of some units.

Now suppose that x R is given. Since GR is connected, there exists a path between
x and 1 and, therefore, by the above observation we conclude that x is the sum of some
units. This means that R is generated by its units.

Suppose that a R. Since R is generated by its units, we may write a u1 +. .+
uk, where ui UR, 1 i k. We nowhave the walk

0
e1-. -u1

e2-. u1 + u2
e3-. -u1- u2- u3

e4-. u1 + u2 + u3 + u4

-.
ek-. u1 + + uk a

between 0 and a, when k is even and the walk

0
e1-. u1

e2

-. -u1- u2
e3

-. u1 + u2 + u3
e4-. -u1 - u2 - u3 - u4

-.
ek-. u1 + + uk a

between 0 and a, when k is odd.

This implies that for every x, y R there is a walk W1 between x and 0 as well as a walk
W2 between 0 and y. Thewalks W1 and W2 together form a walk W between x and y. By
using Lemma 2.1, we conclude that there is also a path P between x and y, which implies
the connectedness of GR.

The following proposition contains another necessary and sufficient condition for GR to
be connected.

Proposition 3.3. GR is connected if and only if R cannot have Z2 × Z2 as a quotient.
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Proof. Every finite commutative ring with nonzero identity is isomorphic to a direct product

of finite local rings see [6, p. 95]). Therefore, we may write R ~= R1 × × Rk
where every Ri is a local ring with maximal ideal mi

Suppose by contrary that R has Z2 × Z2 as a quotient. This implies that for at least

two i for example i 1, 2, we have |Ri/mi| 2. Now part a) of Lemma 3.1 implies that
GR1 and GR2 are both bipartite. Thus by using Lemma 2.2, we conclude that GR1×GR2

is disconnected.

On the other hand, by the observation just before Lemma 3.1, we have

GR~=
GR1×GR2 if k 2,

GR1×GR2 ×GR3×...×Rk if k 3.

But for i 1,2 we have 2 /. URi and so GRi GRi Therefore we obtain

GR~=
GR1×GR2 if k 2,

GR1×GR2 ×GR3×...×Rk if k 3.

Now the disconnectedness of GR1×GR2 implies that GR is also disconnected. This
contradiction shows that R cannot have Z2 × Z2 as a quotient.

By assumption R cannot have Z2 × Z2 as a quotient. This implies that for at most
one i, we have |Ri/mi| 2. There are the following cases to be considered:

1) |Ri/mi | > 2 holds for every i
Suppose that x x1, xk and y y1, yk are arbitrary distinct elements of
R1 × × Rk Since for every i with 1 i k we have |Ri/mi | > 2, by using part
b) of Lemma 3.1 we conclude that NGRi xi n NGRi yi Ø. Therefore we may choose

zi NGRi xi n NGRi yi Thus we have the following walk in GR1×...×Rk :

x1, xk)
e1-. z1, zk

e2-. y1, yk

This implies that d(x, y) 2 and so diam(GR) diam(GR1×...×Rk
2.

2) |Ri/mi | > 2 holds for every i except one of them.

First, suppose that k 1. In this case R~= R1 is a finite local ring with maximal ideal
m1 in such a way |R1/m1| 2. Thus, if R is a field, then we have R ~= Z2 and so

diam(GR) 1. If R is not a field, then by using part a) of Lemma 3.1 we conclude that
GR is complete bipartite with |R| 4 and so diam(GR) 2.

Second, suppose that k 2. In this case we may assume that |R1/m1| 2 and |Ri/mi | >
2 for every i with 2 i k. Suppose that x x1, x2, xk and y y1, y2, yk)
are arbitrary distinct elements of R1× R2×. × Rk If either x1, y1 m1 or x1, y1 /. m1,
then by the same argument as above, we obtain a path between x and y with length at
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most 2. This implies that d(x, y) 2. Now, we may assume that x1 m1 and y1 /. m1.
For every i with 2 i k, consider wi as follows:

wi
1 ifxi mi
0 ifxi /. mi

On the other hand, since for every i with 2 i k we have |Ri/mi| > 2, by using part

b) of Lemma 3.1 we conclude that NGRi wi n NGRi yi Ø. Therefore we may choose

zi NGRi wi n NGRi yi Thus we have the following walk in GR1×R2×...×Rk:

x1, x2, xk)
e1

-. y1, w2, wk
e2

-. x1,z2, zk
e3-. y1, y2, yk

This implies that d(x, y) 3. Therefore, for every distinct x, y R1 × R2 ×. × Rk we

have d(x, y) 3 and so diam(GR) diam(GR1×R2×...×Rk
3.

Therefore in both cases we have diam(GR) 3. Thus every two vertices of GR are joined
by a path with length at most 3, which implies that GR is connected.

Propositions 3.2 and 3.3 imply that R is generated by its units if and only if R cannot have

Z2×Z2 as a quotientwhich completes the proof of Theorem 1.1. Ourproof shows that if R

cannot have Z2×Z2 as a quotient, then not only GR is connected, but also diam(GR) 3.

Therefore, we may state

Corollary 3.4. Let R be a finite commutative ring with nonzero identity. If R is generated
by its units, or equivalently, R cannot have Z2 × Z2 as a quotient, then every element of
R can be written as a sum of at most three units.
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[10] Vámos, P.: 2-good rings. Quart. J. Math. Oxford Ser. 2) 56 2005) 3, 417–430.

[11] Weichsel, P.M.: The Kronecker product of graphs. Proc. Amer. Math. Soc. 13 1962), 47–52.

[12] West, D.B.: Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, NJ 1996.

[13] Wolfson, K.G.: An ideal-theoretic characterization of the ring of all linear transformations. Amer. J. Math.
75 1953), 358–386.

[14] Zelinsky, D.: Every linear transformation is a sum of nonsingular ones. Proc. Amer. Math. Soc. 5 1954),
627–630.

H.R. Maimani
Mathematics Section, Department of Basic Sciences
Shahid Rajaee Teacher Training University
Tehran, Iran

and

School of Mathematics
Institute for Research and Fundamental Sciences IPM)
P.O.Box 19395-5746
Tehran, Iran
e-mail: maimani@ipm.ir
M.R. Pournaki
Department of Mathematical Sciences
Sharif University of Technology
P.O. Box 11155-9415
Tehran, Iran

and

School of Mathematics
Institute for Research and Fundamental Sciences IPM)
P.O.Box 19395-5746
Tehran, Iran
e-mail: pournaki@ipm.ir
S. Yassemi
School of Mathematics, Statistics and Computer Science
College of Science, University of Tehran
Tehran, Iran
e-mail: yassemi@ipm.ir

The research of H.R. Maimani and M.R. Pournaki was in part supported by a grant from
IPM No. 87050213 and No. 87200111).
The research of S. Yassemi was in part supported by a grant from the University of Tehran

No. 6103023/1/07).


	Rings which are generated by their units : a graph theoretical approach

