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1 Introduction

Closing theorems, or theorems of Poncelet type, are considered to be one of the most
fascinating geometric facts. Various approaches to their proofs as well as applications
to problems of elementary geometry, theory of algebraic curves, differential equations,
billiards, elliptic integrals, etc., have been studied in many works (see, for example, [1,
2,4, 6, 8, 10, 11, 14], and references therein). One can spot the four best known closing
theorems: Poncelet, Steiner, zigzag, and Emch theorems. We do not mention some other
results, such as, for instance, the Ponzag theorem, that are actually reformulations of one
of these four theorems.

'This paper consists of two parts. First, in Section 3 we derive a general closing theorem
for families of Euclidean spheres in R4. Then, in Sections 4-6, we observe some of its

*The research is supported by the REFBR grants No 10-01-00293 and No 11-01-00329.

Den meisten Lesern diirften die klassischen SchlieBungssitze der Elementargeometrie
von Poncelet, Steiner und Emch sowie das Zigzag-Theorem bekannt sein. Beispiels-
weise zeigt der Schliefungssatz von Poncelet ausgehend von einem #n-Eck (n = 2),
das gleichzeitig einem Kegelschnitt ¢ umschrieben und einem anderen Kegelschnitt
D einbeschrieben werden kann, dass es noch unendlich viele weitere n-Ecke mit die-
ser Eigenschaft gibt. In der vorliegenden Arbeit beweist der Autor einen allgemeinen
SchliePungssatz fiir Sphiren im B¢, aus dem die oben genannten klassischen Schlie-
Pungssiitze durch geeignete Spezialisierung unmittelbar gefolgert werden kénnen.
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corollaries. One of them, Theorem 2, gives a general closing principle for spheres in the
space 3. The four classical theorems of Poncelet type are its direct corollaries (Section 5).
Another one, Theorem 3, extends the Emch closing theorem to spheres in the Euclidean
space R4. Tn the second part of the paper, in Sections 7 and 8, we focus on the elementary
proof of Emch’s theorem on circular series. This theorem is the most general one among
these four classical results. The Poncelet theorem in case of two circles, the planar version
of the zigzag theorem, and the Steiner theorem are actually its special cases. This is shown
in Section 7. Therefore it would be interesting to obtain an autonomous (not relying on the
Poncelet theorem) proof of the Emch theorem using only elementary geometrical tools.
Such a proof is given in Section 7. For the sake of simplicity we restrict ourselves to the
case, when the three circles are embedded to each other. That proof is based on two aux-
iliary geometric results, Theorem 4 on four circles touching two concentric circles, and
Proposition 1 on two chains of circles inscribed in an annulus, which may be of indepen-
dent interest. Finally, in Section 8 we apply this technique to derive a generalization of the
Emch theorem to pencils of circles.

2 Four classical closing theorems

In this section we recall the statements of the four famous Poncelet type theorems. To
formulate them in a unique way it is convenient to introduce the notion of general closing
property for families of circles. This notion will be also used in the next sections, when
we generalize Poncelet type theorems to the space R?. Suppose a circle § and a family
of circles M are given on the plane R?. Straight lines and points are also considered as
circles. We call apoint z € R? singular for the family M if there are more than two circles
from M passing through 7. Assume that the two conditions are satisfied:

(a) The circle § does not contain singular points for M.
(b) § ¢ M.

Let us now consider the following process. Take an arbitrary point Dy on § and draw a
circle v; € M through it (we suppose that such a circle exists; if there are two ones, then
we take any of them). Let Dy be the second point of mtersection of v; and § (in case of
tangency we set Dy = Dy). Draw a circle vy € M through D, different from »; (if it does
not exist, then we set v2 = v). Then we denote by D3 the second point of intersection of
v and §, etc. We obtain a series of circles {wy };’il. The process has period n if v, = 11
or, which is the same, D,+1 = Ds.

Definition 1. A family of circles M is said to possess the closing property on a circle § if
it satisfies conditions (a), (b) and the following condition:

If for some initial point D the process has period n > 3 and all the points Dy, ..., D, are
distinet, then it has the same period for any point D < § that belongs to a circle from M.

Now we are giving the statements of the four classical closing theorems.

Theorem A. [Poncelet [12]] For any quadric « and a circle § on the plane the set of lines
fouching o possesses the closing property on 4.
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As usual we call quadric in R? a set of points x € R? such that (x, Ax) + (b, x) + ¢ =0,
where A is a self-adjoint operator, & < R4 ¢ R, and (-, - ) denotes the standard inner
product in R4, We deal with real nonempty quadrics only. A quadric in R? is called plane.
If the quadric @« in Theorem A is degenerate (a pair of lines, a single line, or a point),
then one replaces the tangents by parallel lines (in case of a line and of a pair of lines)
or, in case of a point, by lines passing through that point. The Poncelet theorem is usually
formulated for two quadrics @ and §. Nevertheless, it can always be assumed that § is
a circle. Indeed, if the quadric § is nondegenerate, then one can map it to a circle by
a suitable stereographic projection. Therefore, in this case the Poncelet theorem for two
quadrics follows from Theorem A. If § is degenerate, then the Poncelet theorem is trivial,
and the reader will easily prove it.

To illustrate the Poncelet theorem, consider the case, when a and § are both circles, and «
lies inside . Take a point Dy € § and draw a line tangent to «, which intersects the circle §
for the second time at a point D,. There are two tangents to the circle « passing through
D>. One of them is Dy D;. Draw the second one D2 D3 (the point D3 lies on §). Then
we draw the next tangent D3 D4 not coinciding with the previous one, etc. The Poncelet
theorem says that if this process cycles after n steps, i.e., Dy = Dy (Fig. 1), then it

Fig. 1 Poncelet theorem

will cycle for any choice of the initial point Dy with the same number of steps n. Thus,
if there is an n-gon inscribed in the circle § and circumscribed around the circle «, then
there are infinitely many such n-gons. Moreover, any point of the circle § is a vertex of one
of those inscribed-circumscribed n-gons. A beautiful proof of this version of Theorem A
using measure theory was derived by Jacobi and Bertrand (see, for instance, [14]). Proofs
of Theorem A involving the theory of projective quadrics see in [3, 11]. Other proofs based
on various ideas can be found in [1, 2, 8, 10]. None of them is elementary.

To formulate the next classical closing theorem in its most general form we use the notion
of index of tangency. The tangency of two circles is called interior if one of the circles
lies inside the other. Suppose @g, @1 are circles on the plane; then for an arbitrary circle g
touching both aq and «; the index of fangency is O if there is an even number of interior
tangencies among the two ones: § with «g and # with «;. If this number is odd, then
the index is 1. This notion is naturally extended to the case, when some of the circles «;
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become straight lines (the index depends on the orientation of the line). For giveni = 0, 1
we denote by M; the family of circles touching «¢ and «; with index ¢. If either «g or a
becomes a point, then My = M. The same notation will be used in the next sections for
families of spheres in R> touching two given spheres.

(Given two circles a¢ and «; on the plane, «g inside «;. In this case the family M | consists
of circles inscribed in the annulus formed by the circles «g and «;. The process of Steiner
produces a series of circles {vg lgeny © M as follows: v; € M is arbitrary, for any
k € N the circle vg4; touches vy and is different from vy if & = 2. The process has
periodn > 3 if vy = vg.

Theorem B. [Steiner] If the process of Steiner is periodic for some inilial circle vy, then it
has the same period for any vy € M.

Thus, if there is a closed chain of n touching circles inscribed in the annulus between «g
and ¢ (Fig. 2), then there are infinitely many such chains, and any circle inscribed in the
annulus can be the first circle of a chain. This construction is sometimes called Steiner’s
necklace, or even Steiner’s felephone dialer. In contrast to other closing theorems Theo-
rem B has several elementary proofs. The most known one is by inversion: if one applies
a suitable inversion taking «p and «; to a pair of concentric circles, then the statement
becomes obvious. However, none of those elementary proofs can be extended to the other
Poncelet type theorems.

Fig. 2 Steiner theorem

The third one is the zigzag theorem. It also deals with two circles, but this time the circles
are not necessarily on one plane, they may have arbitrary positions in the space. Given a
number o > 0 and two circles s and § in the space R?. Assume this pair of circles satisfies
the following condition:
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(¢) The orthogonal projection of any of these circles onfo the two-dimensional plane
containing the other circle does not pass through its cenfer.

So, if one takes either of these circles and erects a perpendicular to its plane at the center
of that circle, then it does not meet the other circle.

Take an arbitrary point Dy < 4. If the sphere of radius g centered at D intersects s, then
we take any of two points of intersection and call it .S;. Then we take a point D, € § such
that D257 = p and Dy == Dy (if it does not exist, then Dy = D7). Further, the point $; € &
is such that S2 D> = p, S2 £ 51 (if such a point does not exist, then we set 53 = S1), and
so on. The zigzag process produces the sequences { Dy } and {5 | for a given initial segment
D151 = p. Zigzag has period n if Dy = Dy.

Theorem C. [zigzag] If the zigzag has period n = 3 for some inifial point D1 € § and all
the intermediate points are disfinct, then it has the same period for any point Dy € §, from
which one can make the first step.

The zigzag process can be interpreted as jumps of a flea from one circle to another with
the same length of the jump o (Fig. 3). If after 2n jumps the flea arrives at the starting
point Dy, then it will happen for any starting point on the circle §. In other words, if there
is a 2n-gon, whose even vertices lie on the circle 8, odd verfices lie on the circle 5, and all
sides have the same length p, then there are infinitely many such 2n-gons. Moreover, any
point of § can be a vertex of such a 2n-gon.

Dy

Fig. 3 Zigzag theorem

Theorem C originates in [5]. Its proofs based on various ideas, highly non-elementary, can

be found in [1, 4]. The equivalence of the zigzag theorem and the Poncelet theorem was
established in [9].

Now we turn to the fourth closing theorem. We are going to see that this theorem is, in a
sense, the strongest one: the three others easily follow from it. In the statement we again
use the families of circles Mgy and M defined above.

Theorem D. [Emch [7]] There are circles ap, a1, and 8§ on the plane, each of them may
become a point. Then for any i < [0, 1} the family M; corresponding to the pair of
circles o, o possesses the closing property on 38, provided § ¢ M.

Fig. 4 illustrates Theorem D in case, when the circle § lies between «g and «;. If there is a
closed chain of # circles inscribed in the annulus formed by «g and «, such that each pair
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Fig. 4 Emch theorem

on neighboring circles meets on §, then there are infinitely many such chains. Moreover,
any circle inscribed in the annulus can be the first circle of a chain.

A proof of Theorem D can be found in [1]. In [13] this theorem was derived from the
Poncelet theorem by elementary geometric tools.

3 General closing principle

We are going to establish a fundamental theorem that implies not only the classical The-
orems A—D, but also their multidimensional generalizations obtained in the next sections.
This theorem is formulated in the space R¥ for series of Euclidean spheres. Let us start
with introducing some notation. We denote by S(z, r) = {x € R?, |x—z| = r} a Buclidean
sphere in R4 of radius r centered at z; by P(n,c) = {x € R4, (n,x) = ¢} we denote a
hyperplane with a direction vector #, [n| = 1, and ¢ € R. A sequence of spheres S(zg, 7¢),
k € N, convergesto the plane P (n, ¢) if rp — o0, 2 /|7x| — n and (|zk|2—r§)/2|zk| —C
as k — o0o0. By spheres we also mean points (when r = 0) and planes, unless the opposite
is stated (for instance, when the radius is given). In particular, S(z, r) denotes a sphere or
a point (when r = 0), but not a plane.

Let us now define the closing property for families of spheres in R?. Suppose a circle 3
and a family of spheres M are given in the space R, We call a point z = R? singular
for the family M if there are more than two spheres from M passing through z. The two
following conditions extend conditions (a) and (b) (Section 2) from circles to spheres:

(@) Circle § does not contain singular points for M.
(b") There is no sphere in M conlaining &.
Consider now the same process as in Section 2 for spheres. For an arbitrary point D on the

circle § we draw a sphere v; € M through it (we suppose that such a sphere exists; if there
are two ones, then we take any of them), and denote by D> the second point of intersection
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of vy and § (in case of tangency D> — D). Draw a sphere v € M through D- different
from vy (if it does not exist, then we set va = v1), and denote by D3 the second point of
its intersection with 3, etc. We obtain a series of spheres {vy };~ . The process has period
n if vy = vy or, which is the same, D, .1 = Dy.

Definition 2. A family of spheres M is said to possess the closing property on a circle &
if it satisfies conditions (a"), (b) and the following condition:

If for some initial point D the process has period n = 3 and all the points Dy, ..., D, are
distinct, then it has the same period for any point Dy < 3 that belongs to a sphere from M.

'The main result of this section gives sufficient conditions for a family of spheres to possess
the closing property on any circle. Suppose we are given a set I’ © R¥, which is either a
plane quadric or a subset of a straight line. For arbitrary ¢ « R? and # < R consider the
set of spheres {S(z, r) © R4} defined by the following relations:

rP=z—al®*+b, zel. (1)

So, this family consists of all spheres S(z, 7) suchthatz < "and [z — a|> + & = 0, in
which case r = /|7 — a|? + b. If the set I is unbounded, then we add to this family one
or two limit planes: if I" is a hyperbola or a pair of lines, then the two planes P {ny, ct ),
k = 0,1, are added, where ny are the direction vectors of the lines or of the asymptotes
of the hyperbola, ¢y = (ng, @); if I" is a subset of a line, then one plane P (n, ¢) is added,
where n is the direction vector of the line, ¢ = (n, a).

Theorem 1. Family (1) possesses the closing property on any circle § — R? that does not
contain singular points for family (1) and does not lie on ils spheres.

Proof. First, we reduce the theorem to the planar case, i.e., to d = 2. Then we show that
all circles of family (1) touch a suitable quadric «, after which the theorem will follow
from Theorem A.

Thus, let us reduce the theorem to the case d = 2. We consider only spheres of family (1),
the same results for planes, if they exist, will follow from the limit passage. Without loss
of generality it may be assumed that the origin is located on the two-dimensional affine
plane K contaming the circle §. If some sphere S(z, r) of family (1) intercepts a circle
on K with center z; and radius rq, then 2 — |z|2 = r12 — |z1 \2. Whence 71, r; satisfy (1),
where ¢ and I" are replaced by their orthogonal projections onto K and the parameter &
is also properly changed. Thus, the family of circles formed by intersections of spheres
from family (1) with the plane K can be defined by similar relations on K.

Let g be the center of the circle §, R be its radius. Take an arbitrary circle y of the family (1)
intersecting . Let I be the line containing the common chord of § and y (Fig. 5). Any
point x < [ has equal powers with respect to § and y, hence |[x — ¢g|> — R* = |x —
z|? — r2. Expressing #? from (1) we obtain after simplifications (x — @,z — q) = k,

_ R—lal’-lgl*~b i : - ivial (z —
where k = > + (4, g). This linear equation on x is nontrivial (z — g and k

cannot vanish simultaneously), otherwise the circle ¢ coincides with §, which contradicts
the assumption. So, we obtain a family of lines £ = {I(z), z € '}, where l(z) = [ =
(x e R?| (x —a,z —¢q) = k). If T is a subset of a straight line, then all the lines of £



Generalized closing theorems 105

Fig. 5

concur, or they are all parallel. In this case the statement is trivial: for any point Dy < § the
process has period 2, whenever it can start. If I is a quadric, then all lines of the family £
touch the quadric «, which is obtained from the dual quadric (I" — g)* by applying the
multiplication by the factor k£ and the translation by the vector a. Therefore, in this case
the theorem follows from Theorem A. L

In the next three sections we observe some crucial corollaries of Theorem 1. We are going
to see that Theorem 1 is a quite powerful tool to prove many Poncelet type results. First,
we establish a special closing theorem for spheres in the space R? that imply, just as simple
special cases, all four classical Theorems A—D. Another simple corollary of Theorem 1 is
that the zigzag theorem holds for any pair of circles in R¥, not necessarily in R¥. Then we
go further and derive a general closing theorem in R which is a generalization of Emch’s
theorem (Theorem D) for all dimensions d = 2.

4 Closing theorem in R® and the four classical theorems

In the space R given a sphere @ and spheres Sp, S; € R? that are not symmetric with
respect to  (i.e. are not mapped to each other by the inversion with respect to ?). The
sphere (J, and one of the spheres Sg, S; may become points. Let M;, i = 0, 1, be the
corresponding families of spheres tangent to Sy and Sy (see the definition in Section 2).
Choose i £ {0, 1} and consider the family M of spheres from M; that are orthogonal
to Q. There are at most two singular points in R? for the family M, this will be shown in
Remark 1. Orthogonality, as usual, means that two tangent planes to the spheres drawn at
their common point are perpendicular to each other. Equivalently, two radii of the spheres
starting at their common point form a right angle. If @ is a plane, then a sphere is orthog-
onal to @ iff it is centered on @; if ¢ is a point, then a sphere is orthogonal to @ iff it
passes through Q.

Theorem 2. The family M possesses the closing property on any circle 8 — R that does
not pass through singular points and does not lie on a sphere from M.
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The geometrical meaning of this theorem is less obvious than for Theorems A-D because
of that orthogonality condition. However, as we will see below, Theorem 2 implies all of
them. In some sense, Theorem 2 is a common root for all the classical closing theorems.

The proof of Theorem 2 is by merely showing that the family M satisfies the assump-
tions of Theorem 1. We use several well-known facts of elementary geometry. Any pair of
spheres .Sg, S; of different radii has two homothety centers A, /1. This means that there is
a homothety centered at s taking the sphere Sp to 51, and the same holds for the point A;.
For each i = 0, 1 the line joining the points of tangency of any sphere from M; with Sp
and with 57 passes through £;. Moreover, the point £; has the same power with respect to
all spheres of the family M;. In the sequel we denote this power by p;.

Proof of Theorem 2. With possible inversion it may be assumed that ¢, Sp, and .51 are
spheres (not planes) and that Sq, S; have different radii. Thus, ro # r;, where S =
S@Zr,re), £ = 0, 1. Choose some i < {0, 1} take the corresponding subset M of the
family M; and consider an arbitrary sphere S(z,7) € M (Fig. 6). The power of the point

Fig. 6 Closing theorem in R3 (Theorem 2)

h; with respect to this sphere is equal to p;, so |z — h;|* — r* = p;. Thus, the sphere
S(z, r) satisfies (1) with a = &;, b = — p;. Since this sphere is orthogonal to ), we have
|z —2z1] 224 r%, where 7z is the center of () and r» is its radius. Subtracting this equality
from the previous one, we obtain a linear equation in z, which defines some plane L « R?.
On the other hand, the centers of all spheres of M; form a quadric in R? with foci zg, z1-
Therefore the centers z of the spheres S(z, 7) € M lie on the intersection of that quadric
with the plane L, i.e., on a plane quadric I'. It now remains to apply Theorem 1. ]

Let us now derive Theorems A-D from Theorem 2.

Theorem 2 = Theorem A. Sy, 51 are arbitrary spheres inscribed in a cone that has the
quadric « as a plane section; (2 is the point at infinity.

In this case all spheres of M are planes, because they contain the point at infinity. They
intersect the plane of the quadric « by lines touching «. From this Theorem A follows.
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Theorem 2 = Theorem C. In this case @ is the plane of the circle s, the spheres $; are
concentric to § and have radii |r & p|, where  is the radius of s.

Theorem 2 = Theorem D. We set () to be the plane of the circles «g, a1, §, the sphere .S;
has its center on the plane  and intersects it along the circle «;, 7 = 0, 1.

In this case all spheres of M are centered on the plane @ and intersect that plane by circles
tangent to both «g and .

Theorem 2 = Theorem B. Theorem B is a special case of Theorem D (Section 7).

Thus, the Poncelet theorem corresponds to the case of Theorem 2, when ( is the point
at infinity; the zigzag theorem corresponds to the case, when Sy, S; are disjoint and both
orthogonal to ; finally the Emch theorem corresponds to another special case, when the
circle § lies on the sphere (2, and the spheres Sp and 51 are both orthogonal to (.

Remark 1. Theorem 2 holds for general spheres 2, So, S; and a circle § in the sense that
any three spheres and a circle in general position satisfy the assumptions of Theorem 2.
To see this we show that there are at most two singular points for the family M. With
possible inversion we may assume that the radii of the spheres .So, 51 are different. If 7 is
a singular pomt, then z ¢ @ and, moreover, the line joining z and z (the inverse image of
z with respect to the sphere ) passes through A, and (h; — z, h; — 7) = p;. To show this
we make an inversion with center at the point z (the images will be denoted by prime).
Spheres of M containing z become planes passing through the center of the sphere Q' (or
perpendicular to the plane Q' in case z € (), tangent to the spheres Sj, 57 . There are at
most two such planes unless the center of (' coincides with the homothety center of the
spheres S, 5] . This case corresponds to the property of the point z described above. There
are at most two points z with this property.

5 Zigzag theorem for two circles in R?

Another immediate corollary of Theorem 1 is the extension of the zigzag theorem to spaces
of all dimensions.

Corollary 1. Theorem C holds for any pair of circles in R satisfving condition (c).

Proof. Let s and § be arbitrary circles in R4 and p = 0 be the length of the jump. The
family M of spheres of radius p centered on s can be defined by relations (1), where

I" = s, a is the center of the circle s, r is its radius, and b = p% — r2, O

6 Closing theorem for spheres in R?

As we already mentioned in the introduction, the Emch theorem plays a special role among
the four classical closing theorems. In some sense, it is the strongest one among them,
because the Poncelet theorem for two circles, the Steiner theorem, and the zigzag theorem
in case of circles on one plane follow easily from Emch’s theorem. This will be shown
in Section 7. That is why it would be most interesting to have the Emch theorem not
only in the plane, but in the space R4 for any 4 > 2. Instead of the family of circles M
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Fig.7 Generalized Emch theorem (Theorem 3)

touching two given circles ag, a1 on the plane, as in Theorem D, we now consider a family
of spheres touching 4 given spheres in R (Fig. 7). It appears that, under some general
assumptions, this family possesses the closing property on any circle § R4, This means
that if there is a closed chain of n spheres in R¥ touching 4 given spheres such that each
pair on neighboring spheres intersect on the circle §, then there are infinitely many such
chains. Moreover, for any point of § there is a chain starting in it. This is a generalization
of Emch’s theorem to R?. To formulate it one needs to overcome one difficult point. In
Theorem D we deal with two families of circles Mo, M| touching two given circles. For
d spheres in the space R? there may be as many as 2%~ such families of spheres. To
classify them it will be convenient to use the notion of oriented sphere.

An oriented sphere S(z,7) of radius = R centered at z is the set of points x « R%
such that |[x — z| = |r|. So the radius of an oriented sphere may take any real value;
S(z,r) and S{z, —r) are considered as two different spheres, whenever » = 0, although
they correspond to the same set of points in R%. P(xn, ¢) denotes the oriented plane that
consists of points x € R? such that (n, x) = c. The planes P(n, ) and P(—n, —c) are
also considered to be different, although they correspond to the same set of points. In
this section all spheres and planes are assumed to be oriented. A sphere S(z, ) touches a
sphere S(zg, 7o) when |z — 79| = |r + rgl; it touches a plane P(n, ¢) when (z,n) +r = c.
A collection of spheres S; = S(z;,r;),i = 1,...,d is said to be in the general position if
the affine hull of the points (z;, 7;)7 € Rt i = 1,...,4d, is of dimension d — 1. This
means that the points (z;, ;)7 are vertices of a (d — 1)-dimensional simplex. The general
position property is invariant with respect to translations and orthogonal transforms of R%,
but not with respect to inversions. We call two collections of spheres (including planes)
equivalent if one of them can be obtained from the other by finitely many isometries and
inversions. Now we are ready to formulate the main theorem.

Let us have a collection of & spheres S; = S(z;,7;),i = 1, ..., d. Some of them, but not
all simultaneously, may become points. Consider the family M of spheres tangent to all
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the spheres S;. Note that in case d > 3 the family M may be empty for some collections.
For a set of d usual (non-oriented) spheres there are up to 2! such families, depending
on the orientation.

Theorem 3. Let a collection of d spheres in RY be equivalent to a collection in general
position and the family M of spheres touching them be nonempty. If a circle § C R? does
not contain singular points and does not lie on a sphere from M, then M possesses the
closing property on 8.

Let us see what Theorem 3 gives for small dimensions 4.

d = 2. Any pair of distinct circles in the plane is in general position, therefore Theorem 3
becomes the Emch theorem.

d = 3. Theorem 3 holds for any friple of spheres in R3, for which there is a sphere
touching them. If a triple S(z;,r;), i = 1, 2, 3, is not in general position, then the points
(ziyri)¥ e B* are collinear. Whence the centers z; are on the same line as well. Applying
the inversion with some center outside that line we get spheres in general position.

Thus, in case of small dimensions any collection of spheres are equivalent to one in general
position. For d = 4 this may not be the case. Nevertheless, a “typical” set of 4 spheres and
one circle in R does satisfy the assumptions of Theorem 3. Let us first establish this, and
then we prove the theorem. We start with three auxiliary results. Observe that any sphere
S(z,r) € M satisfies the following system of equations:

r? = [2]%= Blzgz) = 2mr )gi]Pe= i=1,....d; )

FA]

and any plane P(n, c) € M satisfies the system
(zZih) + 1 =0, i=1,....d. 3)

Lemma 1. For any collection of spheres in general position the family M contains at
most two planes.

Progf. Subtracting the first equation of system (3) from the others we obtain the linear
system (z; — z1,8) =r; —r1,i = 2,...,d of rank d — 1. Its solutions # form a straight
line in R4, which contains at most two points such that |n| = 1. []

Planes of the family M, if they exist at all, are limits for the spheres of that family. Now
we clarify when all spheres forming an affine plane (in the space of spheres) can touch one
sphere.

Lemma 2. Suppose an affine plane L < R4YL, dim L > 1 is such that there is a sphere
(or a point) So — R? iangent to every sphere of the family £ = (S(z,7) | (z,r)T < L}.
Then L is a line and L is a pencil of spheres tangent at one point. Moreover, So € L.

Proof. If dim L — 1, then the center z of any sphere of £ lies on a fixed straight line
b — R4 and its radius r is a linear function of z. If all the spheres from £ touch Sp, then
the center of Sy lies on b as well, otherwise r is not linear in z. Therefore, £ is a pencil
of tangent spheres. In particular, Sy also belongs to £. In case dim L > 2 all lines on L
concur at one point corresponding to the sphere Sg, which is impossible. L]
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The last auxiliary result restricts the location of singular points of the family M.

Lemma 3. For a collection of d spheres in general posifion all singular points of the
family M lie on some affine plane E of dimension d — 2. If M contains two planes, then
their intersection coincides with E.

Proof. It suffices to show that if a point zo is singular, then the point (zo, 0)7 belongs
to a plane Eq C R4+1 which is an affine hull of the points (Zg,?‘i)T, i = 1,....4d.
Note that dim £y = d — 1. For a sphere 5(z, r) that passes through the point zo we have
72 = |z|* — 2(z0, 2) + |z0|?. Subtracting this equation from each equation of (2) we obtain
the system

, L L 2 2 .
(ZL_ZOaZ)+r£r—§(‘Zt| —ri—|zol*), Ll v o 4)

If (zo, 0)F ¢ Eg, then the matrix of this system has full rank &. Therefore its solutions,
i.e., points (z,7)T, form a straight line I « R4T!. Substituting the solutions in system (2)
we get a quadratic equation. If all its coefficients vanish, then all the spheres correspond-
ing to the solutions (z, 7)7 touch the sphere S;. Hence by Lemma 2 they constitute a
pencil of tangent spheres. Then all the spheres S; belong to this pencil, therefore all the
points (z;, r; )T lie on a line, which contradicts to their general position. Thus, the obtained
quadratic equation is nontrivial and has at most two solutions. So, there are at most two
spheres from M passing through zo. Whence, if a point zg does not belong to a plane
from M, then it is nonsingular. If it belongs to a plane from M, then by (3) it satisfies
the equations (z; — zg. k) —r; = 0,7 = 1,...,d. This system has full rank 4 and so it
has at most one solution #. Comparing this system with (4) we conclude that the line [
is parallel to the vector (n, 1)T e R4*1. Substituting the solutions (z,7) < [ in the first

equation of (2) and taking into account that |n| = 1 we get a linear equation (quadratic
terms disappear), which has at most one solution. Thus, there is a unique plane and at most
one sphere from M passing through zg. U]

Thus, if a circle § does not intersect the (d — 2)-dimensional plane E, then it does not
confain singular points. For an arbitrary point z € § there are at most two spheres from
M passing through z. If the circle § is not contained in any of these two spheres, then it
does not lie on any sphere of M. Thus, we see that in general position a set of d spheres
and one circle in R? indeed satisfy the assumptions of Theorem 3. Now we can prove the
theorem.

Proof of Theorem 3. It suffices to consider the case of d spheres in general position. We
show that the family M can be defined by relations (1) and then apply Theorem 1. The
proof will be realized for spheres of M, for planes (if they exist) it will follow by the
limit passage. Assume first that among the spheres S; there are two ones of different radii
(regarding the sign). Subtracting the first equation of system (2) from the others we obtain
d — 1 linear equations 2(z7 — z;,2) + 2(rn — ri)r = a4, 1 = 2,...,d, where a; are
some constants. For at least one of them the coefficient r; — r; does not vanish. Expressing
r = r(z) from that equation and substituting it in the other equations, we get a system
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of d — 2 linear equations (of rank 4 — 2) for the variable z. Its solutions 7 form a two-
dimensional affine plane Lo  R%. Since the function r(z) is linear, the points (z, 7 (z))T
form a two-dimensional affine plane L — R?*!, Substituting r (z) in the first equation of
system (2) we obtain an equation for z, which is either quadratic or linear. If all points
of L satisfy it, then all the spheres associated to the points (z, 7)T < L touch the sphere
51, which is impossible (Lemma 2). Therefore points z € L satisfying that equation form
a plain quadric (or a line) [" < Lo. Now substitute r(z) in the right hand side of the first
equation (2) and obtain 7% = |z|2 — (a,z) + ¢, where @ € R? and ¢ < R. Extracting the
perfect square we arrive at (1). Finally, if the radii r; are all the same, then the centers of
the spheres of M lie on a straight line ", and one can easily write equation (1). L]

7 Elementary proof of Theorem D

Now we come back to the planar Emch theorem (Theorem D). Among the four classical
closing theorems it is the strongest one: the three others are actually its special cases.
Indeed, if the circle «; degenerates into a point, then an inversion with the center at this
point yields Theorem A for two circles. If «g lies within ¢, and the circle § is orthogonal to
all circles of the family M, then we obtain Theorem B. We use the fact that the center A,
of homothety of the circles ¢ and «; has the same power p; with respect to all circles
of M (see Section 3). Therefore the circle § of radius .. /p1 centered at /5 is orthogonal to
all circles of M and contains all their points of tangency. Hence, Theorem B follows from
Theorem D. Finally, if the circles «g and «; are concentric, then we arrive at Theorem C
for the case when the circles § and s are on one plane. Indeed, if we take as «g, «1 the
circles of radii | £ p| concentric to s (r is the radius of s), then we obtain Theorem C.

Thus, for concentric circles «g, @1 Theorem D becomes the “planar” version of the zigzag
theorem; in case when «g is the point at infinity, we obtain the Poncelet theorem for two
circles; finally, if « is inside 7, and d is orthogonal to all circles of the family My, then
we get the Steiner theorem.

The question arises if it is possible to give a proof of Theorem D that will be elemen-
tary and autonomous (not relying on the Poncelet theorem, in contrast to the proofs of
Theorems 2 and 3). In this section we give such a proof using only tools of elementary
geometry, the most complicated of which are inversions and pencils of circles. To avoid
technical difficulties we restrict ourselves to the following case of mutual position of cir-
cles in Theorem D

(d) The circle § is inside «y, the circle «p is inside §, and we consider the family M of
circles touching « from inside and «p from outside.

The idea of the proof is the following: let a chain of circles inscribed in the annulus

bounded by «¢ and «; intersect the circle § in successive points Dy, Dy, ... and an-
other chain of circles inscribed in the annulus intersect § in points D}, D5, ... For any
i = 1,2,... draw a new circle s; tangent to o through the points D; and D;. It appears
that all the new circles s;,71 = 1, 2, .. ., touch some circle ¢ (Fig. 8).

Moreover, ¢, § and «; belong to one pencil of circles. This implies that if the first chain

cycles (D, 11 = D7), then the second also does (D;1 4= D;). The idea is quite clear, but
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Fig. 8

to realize it we need to establish several auxiliary results. All of them are elementary, but
quite technical. Some of these results, such as Theorem 4 and Proposition 1 are, probably,
of some independent interest.

We begin with a simple auxiliary fact. In the sequel we assume that an arc AB of a circle

has the positive direction from A to B, AB denotes the angle defined by that are.

Fig. 9

Lemma 4. Two circles of radii ry, ry centered af O, O, inlersect at poinis A and B.
Suppose P is the fourth vertex of the parallelogram O, A Oy P; then for any circle centered
at P intersecting the first circle at some points My, N1, and the second one at poinis M»,
Ny (Fig. 9) the following hold.

a) The lines My M, and N1 N> pass through A.
b) M]N] . ANl . AMl . BMl . BNl . 1
M:N»  AMa ANy  BM> BNy 1y

Proof. a) The triangles PO1M; and M> O, P are equal by three equal sides, hence
LMyOWP = /2 M>0,P. Furthermore, /PO1B = /P 0, B, since 0201 PB is an equilat-
eral trapezium. Subtracting the second equality from the first one, we obtain /A M; O1B =

/M, O, B, therefore BM;=BM,. Consequently, /M, AB = /M>AB, and thus the line
M M, passes through A. The proof for Ny N, is the same.

b) It follows from a) that the chords M| N, and MzNz define equal angles on the two

circles: A M1AN;, = ZM>;AN>. Whence gl—ANg = Slmllarly, BM1 = gﬁl = ”1

Finally, since the quadrangle MjM2N1 Ny is mscrlbed in a c1rcle 1t follows that the
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1Ny

triangles M1 AN; and N> AM, are similar with the factor % % Therefore

Before formulating the crucial auxiliary fact, Theorem 4, let us recall that a perncil of
circles is a set of circles on the plane orthogonal to two different circles {all circles may
degenerate into lines and points, unless the opposite is stated). Circular pencils are straight
lines in the three-dimensional space of circles. Any pair of circles b, ¢ © R? is contained
in a unique pencil that will be denoted by P{b, ¢}. For every f € R U {00} the set of points
on the plane, for which the ratio of powers with respect to given circles b and ¢ equals to £
is either empty or a circle of the pencil P{b, ¢}.

Now we are going to establish the main theorem. Take two circles with a common center
P, we call them the bigger circle and the smaller one. Consider the families of circles M ;,
j = 0,1, touching them. Take an arbitrary pair fo, $1 € Mo and a pair yo, y1 € M;.
The points of intersection of 8; and y; will be denoted by A?k and A_}k (the first point is
farther from the center P than the second one). Finally, draw one more circle centered at
P. Let it meet each of the circles §; and yy at two points b3, s = 0, 1 (respectively ).
If a point goes around the circle §; counterclockwise from its point of tangency with the
bigger circle, then it meets the point b? first and b_,;l second. The same with the points ¢}
(Fig. 10). In the notation of Theorem 4 all superscripts are taken modulo 2, for example,

2" 40 3 1
Afy = Ajp ] =€

Theorem 4. Given two circles with a common center P and arbitrary circles f; ¢ My,
Ve € My, i,k = 0, 1. Suppose Afk are the corresponding 8 poinis of their intersection;
then
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a) The 4 points Ai:;k, i,k € {0,1}, lie on one circle (denote it by 8p). The same holds

for the 4 points ALTFTL ik € (0,1} (a circle 8).

b) Let an arbitrary circle centered at P meer §;, vy at poinis b}, c;, respectively. Then
Joreveryi, k € {0, 1} the lines b?cf and b’} C,% pass through the point A?k.

c) Choose arbitrary g, j < {0, 1} and draw a circle touching the circles p; at the poinis
bfw, i =0, 1, and a circle touching the circles yy at the points c?ﬁﬁl, k=0,1.
Then these two circles belong to one pencil with 8 ;.

Thus, if four circles ;. 1, i, k£ {0, 1}, touch two concentric circles, then the eight points
of their intersection A3, are naturally split into two quadruples, each of them lies on one
circle. Drawing a third concentric circle we get the 8 additional points of intersection &%,
c; that form 8 triples of collinear points (Fig. 10). Finally, if we consider two pairs of
circles touching B;, y¢ at the points of their intersection with the third circle, then we
obtain 4 triples of circles, each of them is in one pencil. So this configuration of seven
circles produces two circles, 8 lines and 4 pencils.

Proof of Theorem 4. Let R and r be radii of the circles By and g, respectively, and Oy,
O be their centers. Then 02A80 01 P is a parallelogram with sides of lengths r and R. By
Lemma 4 the lines bgcg and bcl)ccl) concur at A80' This proves item b) fori = & = 0, the
proof for the other indices is the same.

Now draw a circle b touching fg and g1 at the points bg and b%, respectively, and a circle ¢

touching yp and y at the points 0(1) and c?. We assume that both b and ¢ do not degenerate
into lines. Denote by x the radius of the circle b taken with the sign: it is positive if this
circle touches B¢ from outside, and negative otherwise. Similarly v is the radius of ¢ with
the sign. Denote also by B the second point of intersection of the line bgAgO with the

circle b, and by € the second point of intersection of the line céAgo with the circle ¢. The

similarity of circles implies that bgB =1 bgAgO. Therefore the power of the point Ago
with respect to the circle b is Agobg : ASOB = (1 + %)(Agobg)z. Similarly, the power of
the point AJ, with respect to ¢ is (1 + 2)(AJ,ch)?. Lemma 4 yields A3 53/ AJ.ch = R/ 7.
‘Therefore, the ratio of the powers of the point Ago with respect to the circles b and ¢ is

equal to (REOR 1y the same way we obtain that for each of the points A?l, Aio, A}n the

(r+y)r
ratio of powers with respect to b and ¢ also equals (R+x)f. Whence, these 4 points are on

one circle (§) that belongs to the pencil P {b, ¢}. This proves items a) and ¢) for j, g = O.
The proof for other j, g is the same. L]

Corollary 2. Under the assumpfions of Theorem 4 for any j = 0, 1 the following holds:
For an arbitrary circle b fouiching the circles By and py in the same way (both from inside
or both from oulside) there exists a circle ¢ € P{8;, b} fouching yo and yy in the same
way.

Remark 2. Through any point A of the circle yo (different from points of its tangency
with the bigger circle and with the smaller one) one can draw two circles of the family M.
Precisely for one of them A4 is the closest to P point of intersection with yg.
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Theorem 4 b) implies, in particular, that for any i, k € {0, 1} the line joining the points of
tangency of Bi, yx with the bigger circle passes through the point A?k. The same is true
for the smaller circle. We need the converse, whose proof will be a simple exercise for the
reader.

Lemma 5. Suppose an arbitrary straight line passing through the point of fangency of
given circles o and P meel these circles af points A and B, respectively. The circle s
passes through B and fouches « at the point A. Then all such circles s fouch a fixed circle
different from «. This circle fouches p and is concentric fo «.

Now we are formulating the assertion, from which Theorem D follows immediately. Con-
sider arbitrary circles wyp, o1, and § satisfying condition (d). Take two series of circles
e}, {v}c} < M and the corresponding points { Dy} and {D;,'C} on the circle §. We assume
that these sequences both go around § in positive direction and that D] belongs to the arc
D1 D, (Fig. 8). Denote by s¢ the circle passing through the points Dy, D; and tangent to g
from outside.

Proposition 1. All the circles sy, k € N, fouch a fixed circle of the pencil P {3, a1}.

Proof. Tt consists of the consecutive application of Theorem 4 to the pairs of circles vg,
vr,’( and 8z, s+ for all £ = 1 (Fig. 8). A suitable inversion maps the pairs vy, U'i and 1,
§2 to the pairs By, 1 and yp, y1 from Theorem 4. To see this we make an inversion with
center at the second point of intersection of the circles M BK and M C L (the first point of
their intersection is M), where K, M, L are the points of tangency of the circle gy with
51, 82, vy, respectively, and B and C are the second points of intersection of the circle vy
with the circles s; and s, respectively. By Lemma 5 the images of the circles s, §2, v;
touch two concentric circles, one of them is the image of «q. In order to be defined we
assume that the image of &g is the smaller concentric circle and that the images of 51, §2
are situated between these concentric circles. Thus, s;, §2, v; are mapped to the circles
Yo, Y1, Po, and the points D and D, are mapped to Acl)o and Agl, respectively. Let X,
X7 be images of the points D7, D"Z. Draw a circle gy through X that touches both these
concentric circles from within so that X is the closest (to the center) point of intersection
of y1 and B; (Remark 2). Thus, X, = A},. By Theorem 4 a) the points 4}, A9, Al,,
A(i)o lie on a circle. By the assumptions A(1)0= Agl, Ail, X, are on a circle as well. Whence
A?O = X1, and p is the image of v‘i. Thus, an inversion takes circles vy, v’i, §1, §2 to the
circles 8q, B1, vo, Y1, respectively. According to Corollary 2 the pencil P{5, «; } contains
some circle ¢ touching the circles 51, §2 in the same way. It is located between the circles §
and «y. Indeed, if we fix the points Dy, D2 and move the point D’i along the arc D Ds,
then at the extreme positions we have: ¢ = § in case D’1 = Dy, and ¢ = o In case
D} = D;. The circle ¢ changes continuously in the same pencil P{3, a1 } when D] moves.
Hence if for some D’i the circle ¢ is not between § and «1, then for some interior point D'i
of the arc D1 D, one has either ¢ = & or ¢ = «;. Neither of these cases is possible, because
for any interior point of the arc D D3 the circle s; touches neither & nor «;.

Taking the next pairs of circles vy, v’2 and §7, 53, we obtain a circle that belongs to the same

pencil P{3, oy}, lies between § and o, and touches both 52 and s3. This circle coincides
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with ¢ because the pencil F {3, o} has at most one circle between § and « that touches ss.
Hence ¢ touches s3. Thus we consecutively prove that ¢ is tangent to all the circles 5. [

Proof of Theorem D in case (d). Let vy, ..., v, be a periodic series of circles (v,11 =
v1), Dy, ..., Dy be the corresponding points on 4. Take an arbitrary series v’i, U"z, ...and
the corresponding sequence of points D{, D5, ... With possible renumbering it may be
assumed that these sequences both go around the circle § in positive direction and that
the point D’i is located on the arc Dy D> (Fig. 11). Consider the circles sg, k£ > 1, from
Proposition 1 and conclude that they are all tangent to a circle ¢ € P{§, a1 }. The arc D1 D,
has only one point D}, for which the circle passing through the points D} and D, 11 = Dy
and touching «y from outside is tangent to ¢. Therefore D/ . — D’i and sz 41 = §1, which

n+l1
completes the proof. L]

Fig. 11 Proof of Theorem D

8 Generalization of Theorem D

The method developed in the previous section makes it possible to go a bit further and to
obtain a generalization of the Emch theorem for several pencils of circles analogous to the
great Poncelet theorem [3, Theorem 16.6.7]. We formulate it only for one case of mutual
position of circles. Let us have a circle § and two sequences of circles {czg } and {a’i‘ }. Bach

sequence {af} is contained in a pencil A4;, i = 0, 1, that also contains the circle §. We
assume that the circles {o:’g} are all inside & and that § is inside all the circles {O{If I. By
M’f we denote the families of circles tangent to a:"f and a:’g with index 1 (touching a’g from

without and ar:”lC from within).

We choose an arbitrary point Dy € § and draw a circle vy € .Mi through it. Then take the
second point D5 of intersection of vy with the circle §, draw a circle vy € _M% through it,
etc. The circles vy are chosen in each iteration so that the sequence {Dy | goes along § in
positive direction.
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Theorem 5. If the process starting at some point Dy has period n = 3 and all the poinis
D1, ..., Dy are different, then if has the same period for any inifial poini.

The proof is literally the same as the proof of Theorem D and is based on the following
analog of Proposition 1. Given two series of circles {v }, {v};}, where v, v;,’c e Mf keN,
and the corresponding sequences of points {D}, {D,} on §. Assume that D7 is located on
the arc Dy D,. Choose an arbitrary circle g € Ag lying inside § and denote by sy the circle
passing through the points Dy, Dy, and touching o from outside. Then all the circles s,
k € N, are tangent to one circle of the pencil ,4g. The proof of this fact is realized in the
same way as for Proposition 1 and we leave it to the reader.
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