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1 Preliminaries

First of all, we recall some basic definitions and constructions. By an incidence geometry
we mean a triple (P, L, /) consisting of a set P of points, a set L of lines and a relation

/cPxL called incidence. Two incidence geometries (Pi, Li, /i) and (P2, hz,12) sire

said to be isomorphic, if there are bijections <pi : Pi —>- P2 and <p2 ¦ Li —>- L2 such
that (A, l) g /1 if and only if (<pi (A), <P2(l)) € /2- Such a pair of bijections is called an

isomorphism from (Pi, Li, /1) onto (P2, L2, h)- A collineation is an isomorphism from
an incidence geometry onto itself. If (A, I) is a point-line pair and (A, l) g /,we say that
"A is incident with /", "A lies on /", "I passes through A", and so on; and we write All or
HA. However, all incidence geometries are isomorphic to an incidence geometry whose
lines are sets of points, so instead of (A, /) g /we may also write (and think) A e /. Points
that are incident with a common line are called collinear, lines that pass through the same

point are called concurrent. Throughout the paper the word "distinct" will be understood

Unter den klassischen Inzidenzsätzen der ebenen projektiven Geometrie gehören die
Sätze von Pappos und Desargues sicherlich zu den prominentesten Vertretern. Im Rahmen

der Einführung abstrakter ebener Inzidenzgeometrien kann man sich nun fragen,
welche Folgerungen aus der Gültigkeit der Sätze von Pappos und/oder Desargues für
die zugrunde gelegte Inzidenzgeometrie gezogen werden können. So wird in der
vorliegenden Arbeit beispielsweise das folgende Ergebnis unter der Voraussetzung der

Gültigkeit des Satzes von Pappos bewiesen: Ist A'B'C bzw. A"B"C" ein in das Dreieck

ABC bzw. A'B'C einbeschriebenes Dreieck, so dass die Dreiecke ABC und
A'B'C bzw. A'B'C und A"B"C" zueinander perspektivisch sind, so sind es auch
die Dreiecke ABC und A"B"C".
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whenever a special number is mentioned. On the other hand, a phrase like "let A and B be

points" includes the possibility A B.

An incidence geometry is a projective plane if

(PI) for every pair of distinct points A and B there is a unique line incident with A and B

(we denote this line by AS);
(92) for every pair of distinct lines m and n there is a unique point incident with m and n

(we denote this point by m n n);

(P3) there are four points no three of which are collinear.

In a projective plane an ordered triple of noncollinear points is a triangle. Then the points
are called the vertices, sind the lines joining the three possible distinct pairs of vertices are
called sides. We say that two triangles ABC and A'B'C' are centrally perspective from

a point O if the lines AA', BB', and CC are incident with O. The triangles are called

axially perspective from a line / if the points AB C\ A'B', AC C\ A'C, and SC fi B'C are
incident with /. An ordered quadruple AB CD of points is called & four-point, if no three
of the points are collinear. A complete quadrangle is a four-point ABCD, together with

the six lines, called sides, determined by pairs of the four points. The points AB fi CD,
AC fl BD, AD DEC are the diagonal points of the quadrangle.

The following incidence properties are fundamental in the theory of projective planes:

(P) If A, B, C and A', B', C are triples of distinct points on distinct lines / and I',

respectively, and / C\ I' is different from all six points, then the points AB' C\ A'B,

AC'n A'C, and BC n B'C are collinear.

(D) If two triangles are perspective from a point, then they are perspective from a line.

(F) There is no complete quadrangle whose diagonal points are collinear.

Projective planes that satisfy (P) or (D) are said to be Pappian and Desarguesian, respectively.

If in a projective plane (F) is true, we say that it has the Fano property. By a famous
theorem of Hessenberg every Pappian projective plane is Desarguesian. (For a neat proof
of this fact we refer to [7], other complete proofs can be found in [3], [8], [9], or [11].)

Let IK be a skewfield. Let (x\,X2, X3) and (yi, V2, V3) be two triples of elements of IK

different from (0, 0,0). We call them equivalent, if there is a À e IK such that Xi kyi for
all g (1, 2, 3}. Let the elements of P and the elements of L be the equivalence classes

induced by this relation. We denote the equivalence class represented by (x\,X2, X3) by
[^1,^2,^3]. We say that ([^1,^2,^3], [ei, 62,^3]) g Iiîxiei +^262+^363 0. Then
(P, L, /) is a projective plane, this is the projective plane over IK. Equivalently, the points
of this projective plane are the one-dimensional subspaces of the three-dimensional vector
space IK3 over IK, the lines are the two-dimensional subspaces of the same vector space,
and the incidence is the subset relation. If a projective plane is isomorphic to the projective
plane over IK we say that it can be coordinatized by the skewfield IK.

It can be shown (see e.g. [3], [6], [9]) that a projective plane is Desarguesian if and only if
it can be coordinatized by a skewfield; a projective plane is Pappian if and only if it can be
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coordinatized by a field; and a Desarguesian projective plane satisfies the Fano property if
and only if it can be coordinatized by a skewfield in which 1 + 1^0.
In a Desarguesian projective plane we can choose a basis of the corresponding vector space
such that the vertices of an arbitrarily chosen complete quadrangle AB CD are coordinatized

by [1, 0, 0], [0,1, 0], [0, 0,1], and [1,1,1], respectively.

In a projective plane we call a quadruple (ABCD) of collinear points a harmonic tetrad,
if there is a complete quadrangle such that A and C are vertices, D is a diagonal point
of the complete quadrangle, and the line of the other two diagonal points intersects the

line AC at B. If a Desarguesian projective plane satisfies the Fano property, then for any
triples (A, B, C) of distinct collinear points there is a unique point D such that (ABCD)
is a harmonic tetrad. This point is called the harmonic conjugate of C with respect to A
andß.

Let A[ai, a2,as] and B[bi, b2,bs\ he two points in the projective plane over a skewfield

IK. Then any point of AB can be represented by a vector of the form ct(ai, a2, as) +
ß(pi, &2, ^3)', <*, ß e IK, not both of them are equal to zero. If C is represented by
ct(ai, Ü2, as) + ß(pi,b2, bs) and D is represented by ix(ai,a2, as) + 8(pi,b2, bs), then

(ABCD) is a harmonic tetrad if and only if ß(a)~lix(8)~l — 1.

2 The Cevian nest property

We say that a triangle A'B'C is inscribed in the triangle ABC if A' e BC, B' e AC, and

C e AB. A projective plane satisfies the Cevian nestproperty, if the following is true:

(CN) Let A'B'C be an inscribed triangle of the triangle ABC, A"B"C" an inscribed tri¬

angle of the triangle A'B'C. If ABC and A'B'C as well as A'B'C and A"B"C"
sire centrally perspective, then ABC and A"B"C" sere also centrally perspective.

Fig. 1 illustrates the preceding definition.

A1

Fig. 1 The Cevian nest property

C
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It is well-known that (CN) is valid in the classical projective plane (i.e., the projective
closure of the Euclidean plane). The first purely incidence geometric proof of this fact was
presented by J.-L. Ayme in his manuscript [1]. He proved, in fact, the following:

C'vAJ

Ao~------_
C2 ß

Fig. 2 Proof of Theorem 2.1

Theorem 2.1. Ifa projective plane is Pappian, then it satisfies the Cevian nestproperty.

Proof. For the reader's convenience, we reproduce here Ayme's reasoning.

We use that by Hessenberg's theorem the projective plane is Desarguesian as well. Let
A'B'C be an inscribed triangle of ABC and A"B"C" he an inscribed triangle of A'B'C.
Suppose that ABC and A'B'C, A'B'C and A"B"C" sue centrally perspective. (Cf. to

Fig. 2.) Let Ci := AB(lA'B',Bi := AC n A'C, and Ai := BC nB'C. By the Desargues

property Ai,Bu and Ci are collinear. Similarly, C2 := A'B'n A"B", B2 := A'C'nA"C\
sind A2 := B'C n £"C" are also collinear. We have to show that C3 := AB n A"£",
ß3:=ACn A"C", and A3 := £C n £"C" are collinear as well.

Since the triangles Ai A2A3 and Ci C3C2 are axially perspective from the line incident to
C", B", sind A', they are also perspective from a point Y. Then Y is incident to the line of
the points Ai, £1, and C\. Similarly, the triangles B1B2BS and Ai A3A2 are perspective
from a line, so they are perspective from a point Z; finally the triangles C1C2C3 and

B1B3B2 are perspective from a line, therefore they are perspective from a point X. Then Z
and X are on the line of the points Ai, £1, Ci. Using Pappos property (P) to the collinear
triples of points Z, Y, X and A2, C2, B2, we find that the points B", C", and A" are
collinear, as was to be proved. D
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It is easy to see that in the Desarguesian case (CN) has a meaning only if the Fano property
is also satisfied. Indeed, if in a Desarguesian projective plane the Fano property does not
hold, then the diagonal points of every complete quadrangle are collinear (for a proof see

for example [6]). Therefore, if in such a projective plane ABC is a triangle, A' is a point

on BC, and B' is a point on AC, then the diagonals of the complete quadrangle AB A'B'

sire collinear, thus the points C, P := AA' DBB' sind AB D A'B' sire collinear. This means

that the point C := CP n AB coincides with AB n A'B', so A', B', and C are collinear.
Consequently, in this case the "triangle" A'B'C degenerates to a collinear set of points,
so (CN) is meaningless.

It is natural to ask whether the usage of the Pappos property in the previous proof is

necessary. We answer this question affirmatively.

Theorem 2.2. A Desarguesian projective plane satisfying the Fano axiom has the Cevian
nestproperty ifand only if it is Pappian.

Proof. By the previous theorem, every Pappian projective plane satisfies the Cevian nest

property. We have only to show that if a Desarguesian projective plane with the Fano

property satisfies the Cevian nest property, then it is Pappian. We use the notations of the

previous proof. A Desarguesian projective plane can be coordinatized by a skewfield IK,

and since the Fano property holds, the inequality 1 + 1 ^ 0 is true. We will denote the
element 1 + 1 of IK by 2. By our assumption it has a multiplicative inverse denoted by |.
We can choose a basis of IK3 such that A, B, and C are represented by (0,1, 0), (0, 0,1),
and (1, 0, 0), respectively, and the center ofperspectivity of the triangles ABC and A'B'C
is P[l, 1,1]. Then, as an easy calculation shows,

A'=[1,0,1], B'= [1,1,0], C [0,1,1].

Let the center of perspectivity of the triangles A'B'C and A"B"C" he Q[a,b,l]. (We

may suppose that Q does not lie on AC.)
First we calculate a representative vector for the point A". The representative vectors of

<—>¦ <—>¦
the points incident to B'C sire of form ai (0,1,1) + ßi (1,1,0). The points of A" Q can be

represented by vectors of the form yi (1,0,1) + Si (a, b, 1). So for a representative vector
of A' we get

ai (0,1,1) + j0i(l, 1, 0) n (1, 0,1) + h (a, b, 1).

We can choose Si := 1. Then we have

G6i,ai +ßuai) (yi-ra,b,yi + l),
which leads to the system of equations

ßi tt + a

cti + ßi b

«i tt + 1
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From this we obtain tt \(p — a — 1), hence a representative vector for A" is

1 1

-(b-a- 1)(1, 0,1) + (a,b,l)= -(a + b-l,2b,b-a+l),
therefore A" is the point [a + b — 1,2b, b — a + 1].

By a similar calculation,

B" [a-b-rl,-a-rb-\-1,2], C" [2a, a + b - 1, a - b + 1].

Using the same technique, we find that the point AA" C\ BB" is

[a-b-\- l,-a-rb-\- 1, (a - b + l)(a + fc - l)_1(-fl + b + 1)].

The representative vectors of the points that lie on CC" are of the form

ot2(l, 0,0) + jß2(2fl, a + b-Ua-b+1).
The point that has just been found lies on this line if and only if there are scalars 012, ßi in
IK such that

a2(l, 0, 0) + ß2(2a, a-\-b-l,a-b-\-l)
(a-b-\- l,-a-rb-\- l,(a-b-\- l)(a + b - l)~l(-a + b+ 1)),

i.e., if the system of equations

o(2 + 2ß2a a — b -\- 1

ß2(a + b-l) (-a + b + l)
ß2(a -b+l) (a-b+ l)(a + b- l)_1(-a + b + 1)

can be solved. The second equation gives ß2= (—a-\-b-\-l)(a-\-b— l)-1, so the desired

o(2, ßi exist if and only if the obtained ß2 satisfies the third equation. From this it follows
that a Desarguesian projective plane satisfies the Cevian nest property if and only if for all
a,b g IK we have

(-a + b+ l)(a-\-b- l)~l(a-b+ 1) (a - b-\- l)(a-\-b- l)~l(b-a+ 1).

Let x := (a + b — l)~l. Then our previous condition takes the form

(-a -rb-r l)x(a -b+l) (a-b+ l)x(b - a + 1).

After multiplication and cancelling the opposite terms, we obtain

xa— xb — ax + bx xb — xa + ax — bx

which is equivalent to

x(2a-2b) (2a-2b)x.
Denoting 2a — 2b by y, we get

xy yx.
Since for all x, y g IK there are a, b g IK such that (a -\-b — 1)_1 x and 2a — 2b y,
this means that IK is a field, so the projective plane is Pappian. D
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3 The Newton property
A quadruple abed of lines is called & four-line if no three of the lines are concurrent. The
six intersection points of the lines are called vertices. The lines

(aC\b)(cC\d), (aC\c)(bC\d), (aC\d)(bC\c)

sire the diagonal lines of the four-line. A complete quadrilateral is a four-line, together
with its six vertices and three diagonal lines.

In the Euclidean geometry the following theorem, due to Newton, is well-known: the

midpoints of the diagonals of any quadrangle are collinear (for various proofs, we refer to
[10]). On the classical projective plane any two points A, B, their midpoint, and the ideal

point of AB form a harmonic tetrad. So the statement of Newton's theorem may be
formulated in projective terms as follows.

(N) Let abed he â complete quadrilateral and / be a line. If P, Q, and R are the intersec¬
tions of / and the diagonals of abed, then the harmonic conjugates of P, Q, and R
with respect to the corresponding vertices are collinear.

M

P

Fig. 3 The Newton property

If (N) is true in a projective plane, we say that it satisfies the Newton property. It is well-
known (see e.g. [5]) that every Pappian projective plane satisfies the Newton property. The
classical proof strongly depends on the projective theory of conies, and is a special case of
the fact that the poles of a line with respect to the conies touching the lines of a complete
quadrilateral are collinear. For Pappian projective planes the Newton property can also be

proved using the dual of the theorem of Desargues on complete quadrilaterals. Property (N)
has a meaning in every Desarguesian projective plane satisfying Fano's axiom. One may
ask whether it is true independently of the Pappos property. Again, the answer is negative.

Theorem 3.1. A Desarguesian projective plane satisfying the Fano axiom has the Newton

property ifand only if it is Pappian.

Proof. We use the notations of Fig. 3. By our assumptions, the projective plane can be
coordinatized by a skewfield IK in which 1 + 1^0 (see above). As in the previous proof,
we denote the element 1 + 1 of IK by 2. We can choose a basis of IK3 such that four of the
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vertices of the considered quadrilateral are A[0,0,1], B[l, 1,1], C[l, 0, 0], and D[0,1, 0].
Then the remaining vertices are M[0,1,1] sind N[l, 1,0].

The points lying on AC sue of the form [a, 0,1], so we may represent the intersection

of / and AC, i.e., the point P, by (a, 0,1). Since (a, 0,1) (0, 0,1) + a(l, 0, 0), the
harmonic conjugate P' of P with respect to A and C may be represented by the vector
-(0, 0,1) + a(l, 0, 0) (a, 0, -1), so P' is the point

[a, 0,-1].

Similarly, the points lying on BD have representatives of the form (1,1,1) + b(0,1,0).
Let the point Q, the intersection of / and BD,he[l,b-\-l,l]. Then the harmonic conjugate
Q' of Q with respect to B sind D is represented by the vector — (1,1,1) -\- b(0,1,0)
(—1, b — 1, —1), so Q' is the point

[-l,b- 1,-1].

We calculate the intersection R of MN and I. Its representative vectors have the form

ai(0,1,1) + ßx(U 1,0) yx(a, 0,1) + 8x(l,b + 1,1).

We may suppose that Sx 1. Then we obtain the system of equations

ßx Yxci + 1

ûfi + ßx b + 1

«i tt + 1

from which ai (b - l)(a + l)"1 + 1, ßx (b - l)(a + l)-1^ + 1.

R', the harmonie conjugate of R with respect to M sind N, can be represented by a vector of
the form /^(0, 1,1) + "$2(1,1,0), where ßi (ofi)-1/^^)-1 — 1- Thus a representative
vector of R' is

((b - l)(a + I)"1 + 1)(0,1,1) - ((b - l)(a + l)-1^ + 1)(1,1,0).

So R' is the point

[_(£ _ i)(a + i)-ifl - 1, (ft - l)(fl + l)-1 (1 - a), (b - l)(a + l)"1 + 1].

The projective plane satisfies the Newton property if and only if the points P', Q', and R'
sire collinear. This is true if and only if there are scalars of, ß in IK such that

ct(a,0,l) + ß(-l,b - 1,-1)
(-(b-l)(a^iy1a-

holds. This yields the system of equations

(-(b - l)(a + iyla -l,(b- l)(a + l)"1 (1 - a), (b - l)(a + l)"1 + 1)

aa - ß -(b - l)(a + l)~la - 1

ß(b-l) (b-l)(a+lTl(l-a)
_ûf_j6 (ft_l)(fl+l)-i + l

From the first and the third equation we obtain that fi (1 — a) (a + l)-1. Substituting
this into the second equation, we find that the projective plane has the Newton property if
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and only if for all a, b g IK

(1 - a)(a + I)"1 (b - 1) (b - l)(a + l)"1 (1 - a).

Here

(1 - a)(a + I)"1 (-a - 1 + 2)(a + l)"1

-(a + l)(a + I)"1 + 2(a + l)"1

-1 + 2(a + I)"1
and

,-i/i „\ <„ i i\-i(a + I)"1 (1 - a) (a + l)~l(-a -1+2)
(fl+l)-1(-(a+l) + 2)

-l + 2(fl+l)-1,
taking into account that for any k g IK we have

2k (1 + l)k k + k k(l + 1) k - 2.

Denoting —1+2 (a+1)-1 byx, and ft — 1 by y, it follows that the Newton property holds

if and only if
xy yx.

Since for all x, y g IK there are a, ft g IK such that x — 1 + 2(a + 1)_1 and y ft — 1,

from this we conclude that IK is a field, so the projective plane is Pappian. D
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