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Let p be an odd prime. We will study the following sums
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Die Autoren dieses Beitrags ordnen den Primzahlen p 3 (mod 4) zwei trigonometrische

Summen zu, die verschiedene überraschende Eigenschaften an den Tag legen.
Unter anderem kann die Klassenzahl h(—p) des Zahlkörpers Qi-J—p) mit Hilfe der
Differenz der beiden Summen ausgedrückt werden. Es zeigen sich Zusammenhänge
mit quadratischen Residuen modp oder dem Legendre-Symbol mod/?. Die Summen
stehen in Beziehung zur Klassenzahlformel von Dirichlet, die verschiedene Kenn-

grössen von algebraischen Zahlkörpern mit dem Residuum der Dedekindschen Zeta-
funktion in deren Pol verbindet. Dem Leser eröffnet sich ein Bouquet von klassischen
Resultaten in neuem Kleid.
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Surprisingly, we came across these sums as we were working on a certain diophantine
equation. Being non specialists in the relevant area, we were impressed by the nice
properties that these sums have and their elegant consequences. It is this feeling of elegance
that we would like to share with our readers. As pointed out to us by Juan Carlos Perai

Alonso, to whom we are grateful, these sums are closely related to the class-number
formula due to Dirichlet (see (20)), sometimes called "Lebesgue's formula" -see [9], p. 179-,
which "explains", in a sense, their nice properties. For those readers who are not already
acquainted with the notion of class-number, a brief remark has its place. Let D be a
negative integer which is & fundamental discriminant, i.e. either D 1 (mod 4) and D is

squarefree, or D 0 (mod 4) and D/4 is squarefree 2, 3 (mod 4). In particular, if p
is a prime 3 mod 4 (we will deal with such primes in this paper), —p is a fundamental
discriminant. The class-number h(D) has a double interpretation, as the number of
reduced binary quadratic forms of discriminant D, and as the number of classes of fractional
ideals of the quadratic number field Q(s/~D). The reader may very well profit by reading,
for example, sections 4.9.1, 5.1, 5.2 and 5.3.1 of H. Cohen's book [7], written in a very
concrete way; see, especially, the conclusion following Lemma 5.3.4 therein.

All the results presented in this paper, possibly with the exception of Properties 1, 3 and

5(19), are scattered in the literature, mainly (but not exclusively) in articles about the class-
number of binary quadratic forms; see, for example, [9] and [16]. Therefore, our purpose
is not to present new results; rather having expository-pedagogic aim, our paper offers a

bouquet of classical results which are presented in a very smooth, as we believe, manner,
practically using only Elementary Mathematics, or appealing to short and easily readable

elementary papers, like [2], [4], [6], [18], [19].

Since T(p) send C(p) sire very closely related to each other (see (13) and (16)), we
will mainly focus on T(p). We also note that our T(p) is equal to H.L. Montgomery's
— T(l, x) as defined in [17], where x is the non-trivial quadratic character.

As we will see immediately below, if p 1 (mod 4), then T(p) 0 C(p), therefore,
concerning the sums T(p) and C(p), only the case p 3 (mod 4) is of interest. For this

case, we prove a number of elegant number-theoretical properties of T(p). Some of them
have the flavour of the well-known property of the primes p 3 (mod 4), asserting that,
in the range 1 to (p — l)/2 there are more quadratic residues mod/? than non-quadratic
residues (see, for example, [6], [18], [19]). Further, Properties 1 and 2 below give a simple
rule comparing the numbers of even and odd quadratic residues in (1,2,...,/?— 1} and

Property 5 gives an extremely simple rule for expressing h(—p), the class-number of the

quadratic field Q(^/—/?).

First, a few remarks have their place. If Q is any complete set of quadratic residues
mod p, we can write

t(p) «jp~ YItan—•
jcQ P

If p 1 (mod 4), then — Q Q (mod p), from which we immediately conclude that
T(p) 0 and, similarly, C(p) 0. Therefore we make the following assumption:

Throughout this paper, /? will always denote a prime 3 (mod 4).
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We denote by 'ç a primitive /?-root of unity and we put z* y—1. Also, by «Jp~ we mean
the positive square root of /?. It is easy to see that

r(rt 'VFE^§. (3)

therefore, we have

ro» 'V* E 7TF '^ g llTF"1)

=.v? E (tt^-1)
(p-l)/2

/=1

?-l)/2

ë(-tj2+(^2)2----+(^v-1

=i

2

»-1 v-i ,— />-i p-l
E(-i/ E?J T Ec-i/ E ?J • (4)

2 ^-^ ^1-* 2
*=1 /=1 *=1 ;=0

»-1

For every £ 1,...,/?— 1, >J £J' fc is the well-known Gaussian sum, denoted by S(k, /?),

which is equal to * ^ J ^/^, where [ - J is the Legendre symbol. This is a straightforward

consequence of the following more general well-known result:

Let m be an odd positive number and let n be an integer relatively prime to m.

m—l

Put S(k, m) E e2KlJ2k/m. Then,

(m) V^ *fm — * (mod 4)
k

S(k, m)
i (^) «Jm ifm 3 (mod 4)

See, e.g. Theorem 5.6 in Chapter 7 of [13]. When m is a prime /? 3 (mod 4), we can
more directly prove that

S(k,p) i(-)jp, (5)
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without appealing to the above result, by turning to a short paper of Bamba and Chowla
[2]. In that paper, an interesting brief and elementary proof of the relation (1 — i)(l +
im)S(l,m) 2+Jm, where m is a positive odd integer, is given. Consequently, if /? is a

prime 3 (mod 4), then S(l, p) i^fp. By the definition of S(k, m) it is clear that, if k
is a quadratic residue mod/?, then S(k, p) 5(1, /?); and if k is a quadratic non-residue,
then

S(k, p) S(-l, p) S(l, p) i-/p -i
as claimed.

Now, going back to (4) and using (5), we obtain the following expression for T(p):

7-1

E(-d*+i
k=l V

: =%) ' '' '(-)
Let ai,ä2,...,al_L and bi, b2, ¦ ¦ ¦, bv be, respectively, the even and odd quadratic residues

mod/? in the set P (1, 2,...,/?— 1}. Clearly, fx + v (/? — l)/2 and the set of
the quadratic non-residues mod/? in P is {/? — «i,..., /? — %, p — bi,..., p — bv}.

Note that a summand (—1)*+1 (-) in the right-hand side of (6) is positive iff £ e

{p — bi,..., p — bv, bi,..., bv), i.e. 2v summands are positive and, analogously, 2fx
summands are negative. Then, T(p) p(v — ja), where we observe that v — fx. is an odd

number, since v + fx. (/? — l)/2. Thus, we have the following:

Property 1. Let p be a prime 3 (mod 4) and let q0(p) and qe(p) be, respectively, the

number ofodd and even quadratic residues mod p in the set {1,2,..., p — 1}. Then

T(p) p(q0(p) - qe(p)) ¦ (7)

In particular, T(p) is an odd integer divisible by p and by no higherpower ofp.

Next, we rewrite the definition (1) of T(p) as follows,

r— P~l 2,/p x-^ n TT

T(p)=^fTtm (8)
2 ti P

We have the following inequality ofA.L. Whiteman (Theorem 2 of [19]):

Vcot^>0. (9)
n=l l

In view of the identity tane? cote? — 2 cot26, the relation (8) becomes

2 „, Ci n2Tt „Çl 2n2Tt
r(/?) Vcot 2 Vcot (10)

^—' p ^—^ pn=l i n=l i
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Let n 1,2,...,/? — 1. If/?=7 (mod 8), the sets {2n2} and {n2} are identical mod /?,
P-1 2
x—v n TT

hence the right-hand side of (10) is equal to — > cot and, by Whiteman's inequalityt—i pn=i l
(9), it is strictly negative. If p 3 (mod 8), the sets {—2n2} and {n2} are identical

P-1 2
x-^ n TT

mod p, therefore, the right-hand side of (10) is equal to 3 > cot hence, by (9), it is

?i=i p

strictly positive. Thus, in combination also with Property 1, we obtain the following:

Property 2. T(p) > 0 ifp 3 (mod 8) and T(p) < 0 ifp 7 (mod 8). A/«?, m ï/îe

set {1,2,..., p — 1), the odd quadratic residues mod p are more than the even ones when

/? 3 (mod 8); the reverse situation is true when p =1 (mod 8).

Now consider the sum

«crt=-2(£)*-
k=ix/ 7

Dirichlet [10] proved that, for p 3 (mod 4), M(/?) > 0, i.e. among the numbers

1,2,...,/? — 1, the sum of the quadratic non-residues is greater than the sum of the

quadratic residues. In [3], B.C. Bemdt proves that

M(p)
2

k=l KF/

kn
(11)

and, based on (11), he gives (Theorem 3.1 in [3]) another proof of Dirichlet's inequality

M(p) > 0 for /? 3 (mod 4). (12)

Using (11), it is an easy exercise to check that

T(p)
—M(p) if /? 7 (mod

3M(p) if p 3 (mod
(13)

This, combined with Property 2, gives now another proof of (12) which is simpler than
that of Theorem 3.1 in [3].

An upper bound for T(p). From (7) we trivially obtain | T(p)\ < p(p — l)/2. However,
we can obtain a much better upper bound as follows.

Let Q ç (1,2,..., p — l}bea complete set of quadratic residues mod /?. We have

1

Since x(p-V)

\t(p)\<Vp}2
JzQ

< f, it follows that

tan xj E
JzQ tan g(p-2/)

tan g(p-2/) \p — 2j\, hence,

\t(p)\ < -^—2-,n *—' I p — 2 j I
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Note that, as j runs through the set Q, the numbers \p — 2j\ are distinct mod/?, for, if
\p — 2ji\ \p — 2J2\ (mod /?) with ji, J2 € Q and j\ ^ 72, then, necessarily, 72 —ji
(mod p), which implies that —1 is a quadratic residue mod p, a contradiction. Therefore,
the set {\p — 2j\ : j e Q} is a subset of (1,...,/? — 1} with cardinality (/? — l)/2,
consisting of odd numbers, i. e. it coincides with (1,3,...,/? — 2}. Therefore,

1
(p~m

1 1

y—-—< y ——<i+-iog(p-2)t4-i\p-2i\- ^ 2k-l 2 &KF J

jgQu ¦" k=l

from which we obtain the following:

Property 3. For any prime p 3 (mod 4) we have

7X/?)| < -^^ 1 + -log(/? - 2) (14)
tt \ 2

Now we go on to the study of C(p). We use the following alternative expression for C(p)
(cf. (3)):

COO -iV?X! TTTJ' (15)

where ß is a complete set of quadratic residues mod /?. It is straightforward to check that
C(3) 1, therefore we assume that p > 3. By Whiteman's inequality (9), we have

C(/?)>0.
Just before obtaining Property 2, we actually proved that T(p) —C(p) if p 7

(mod 8) and T(/?) 3C(/?) if /? 3 (mod 8). Therefore, in view of (13),

C(p) M(p). (16)

Relations (13) and (16) combined with Property 1, imply the following:

Property 4. C(p) is equal to the excess ofthe sum ofquadratic non-residues over the sum

of quadratic residues mod p. C(p) is an odd positive integer, divisible by p and by no
higherpower ofp. Ifp 3 (mod 8), then T(p) is a multiple of 3, hence, q0(p) — qe(p)
is a positive multiple of 3.

The following elegant property relates T(p) with the class-number of the quadratic number
field QL/=p).

Property 5. Let p be a prime number 3 (mod 4) and let h(—p) be the class-number

of the quadratic numberfield QG/—p). Then,

T(p)= \-pK-p) ifP 7 (mod 8)

[3ph(-p) ifp 3 (mod 8)

M(p) C(p) ph(-p) (18)

/;i ii| ie(p)-qo(p) ifp =1 (mod 8)

\(qo(p) - qe(p)) ifP 3 (mod 8)
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Proof We have

c-^ / k \ kn
/a ,;, =_- ^(-)cOt— iii*l Çlfk\

This is a consequence of the more general formula, referred to as "Lebesgue's formula" in
Dickson's "History" [9], p. 179, due to Dirichlet [11]. For a recent proof of that formula
we refer the reader to the Corollary 2.3 of [5].

A complete set of quadratic non-residues mod/? is {—k2 : k 1,..., (/? — l)/2}. Therefore,

(20) becomes

1 C^2 Pn "^2 -Pn
h(-p) 2jf\ £ cot— E cot—

v/ \ k=l * k=l l

1 ^/2 k2TT 1 1T cot -C(p) -M(p)tl p p p

(by (16)), which proves (18), and now (17) and (19) are straightforward consequences of
(13) and Property 1, respectively. D

The relation (17) is a special case of Corollary 5.2 in [5] which goes back to V.A. Lebesgue
[14]. The relation (18) is due to Dirichlet [11]; see also Corollary 3.6 of [5].

Note that, since qe (/?)+q0(p) (/?—1)/2, which is odd, Property 5 implies the following:

For a prime p 3 (mod 4), h (—p) is odd.

This is Corollary 3.6 of [3].

Further
from (6),

Further expressions for T(p) and consequences. Since (^-J — (f we have

(p^l/2 /k\T(P) P £ (-Dk+1(-)
k=l \P'

(21)

We have

7-1

k=l W y

i\,n\, ,(P-2\ m (^ fp-t,
1\ /3\ {P-1\ (P-1\ fp-4\ fl

^:|-ì + (-ì+-+(—V: - ^
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where A (±) + (§) + • • • + (^). Therefore, by (23) and (22),

2A A_{l\tn\.(2\. /(P-D/2

implying

I 2\//l\ (2\ /(/?-l)/2

2\//l\ /2\ /(/?-l)/2

Collecting together the expressions for T(p) in (6), (21), (23) and the expression for A
just above, we have:

r(p) fE(-Dê+I(-) W

^/2 /jfc\' E (-^U) C25)

1\ /3\ //?-2\\ (26)

(27)

Note that the sum appearing in (27) is a sum of the values of a primitive character mod p,
therefore, by the Pólya inequality1 (see Theorem 8.21 in [1] or inequality (2) in Chapter 23
of [8]) this sum is < p1/2 log /?. This gives the upper bound | T(p) | < p3/2 log /?, which
is slightly worse than the upper bound in Property 3.

The expression (27) for T(p), in combination with a well-known result of Dirichlet saying
that, among the numbers 1, 2,...,(/? — l)/2 there are more quadratic residues than non-
quadratic residues mod/? (see e.g. [6], [19], [18], or exercises 14 through 17, Chapter 16

of [12]) furnishes another proof of Property 2.

Next, equating the right-hand sides of (25) and (27) and separating the Legendre symbols
with even "numerators" from those with odd ones, we find

/2\\//l\ /3\ /(/?-l)/2

If p 3 (mod 8), then (28) implies that |) + (±) + • • • + ((*~l),2\ 0, hence,

i 0, which says that, among the numbers 1, 2,...,(/?—3)/4
there are as many quadratic residues as quadratic non-residues mod /?; and since T(p) >

Or Pólya-Vinogradov inequality.
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0, (27) implies that there are more quadratic residues than quadratic non-residues among
the numbers (/? + l)/4,...,(/?- l)/2.

If p 7 (mod 8), then (28) implies that (±) + (§) + • • • + (^'ï?'2) 0, hence,

/i£^)/2 \ Q and, consequently,

>P 0/4\ {(p-3)/2\ ,/(/?- 1-, 2

This shows that there are as many quadratic residues as quadratic non-residues mod/?

among the numbers (/? + 1)/4,...,(/? — l)/2; and since T(p) < 0, (27) implies that
there are more quadratic residues than quadratic non-residues among the numbers 1,...,
(p-3)/4.

Property 6. Ifp 3 (mod 8) then, among the numbers 1, 2,...,(/? — 3)/4, there are
as many quadratic residues as quadratic non-residues mod/? and among the numbers

(/?+1)/4,...,(/? —1)/2 the quadratic residues are more than the quadratic non-residues.

Ifp 7 (mod 8) then, among the numbers 1, 2,...,(/? — 3)/4, there are more quadratic
non-residues than quadratic residues mod/? and among the numbers (p + l)/4,...,
(/? — l)/2 the quadratic residues are as many as the quadratic non-residues.

In other words,

^/4 /k
k=X

^/2 /k
*=Q»+l)/4 s*

>0 i/ps7 (mod 8)

0 ifp 3 (mod 8)

0 iy/7^7 (mod 8)

>0 ?//? 3 (mod 8)

The relations (29) and (30) can also be inferred by an argument of B.C. Bemdt and
S. Chowla (p. 8 of [4]) in combination of their main Theorem therein, applied with q 2.

Property 6 implies another interesting fact, already noted in 1979, namely,

Property 7. Ifp 3 (mod 8), then the number of even quadratic residues mod/? that
are < p/2 equals (p — 3)/8. If p 1 (mod 8), then the number of even quadratic
residues that are > p/2 equals (/? + l)/8.

The fact that Property 7 is implied by Property 6 is noted by Emma Lehmer [15].

Finally, we remark that our arguments that led to Property 6 furnish another expression for
T(p), namely,

T(p) ((^) + -..+ (^) + (^)) if,-3 (mod 8)
(3i)'~3)/4^ if/? 7 (mod 8)
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