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I Elemente der Mathematik

Families of polyhedra

G.C. Shephard

G C Shephard was awarded a doctorate at Cambridge University m 1951 He held
positions at the University of Birmingham and the University of East Anglia (Norwich)
from which he retired as Professor Emeritus m 1987 He has written many papers on
convexity theory, polytopes, tessellations and theory of patterns

1 Introduction

In the upper part of Figure 1(a) we show the net N(P) of a polyhedron P. If this is cut
out of paper, folded along the (dashed and solid) lines, and edges with the same labels

(a, b,c, joined together, we obtain a model of the surface S(P) of a polyhedron P.
Here P is a A-spindle (a cube with two 4-pyramids adjoined to opposite faces). If, instead
of assembling S(P) as described above, we cut the net into two pieces along the solid line
we get the regions shown m the lower part of Figure 1(a). These are the nets of two
polyhedra P\ and P2. P\, on the left of the diagram, is a 3-prism with a tetrahedron adjoined to

one of its triangular faces (known as an elongated tetrahedron), and P2, on the right, is a

4-pyramid. Since P\ and P2 were derived from P, borrowing biological terminology, we
shall say that P is a parent and P\ and P2 are its offspring. We write

p Px luj P2

Wer em Polyeder aus Papier oder Karton herstellt, geht dabei üblicherweise von einem
Netz aus. Das ebene Netz, ein Polygon, wird dabei ausgeschnitten, geeignet gefaltet

und entlang der Kanten verklebt. Obwohl sich die Mathematik diesen Netzen seit
fast fünf Jahrhunderten widmet, sie tauchen etwa m den Werken Albrecht Durers auf,
bleiben bis auf den heutigen Tag ungelöste Fragen offen. So ist zum Beispiel nicht
bekannt, ob jedes konvexe Polyeder ein Netz besitzt. Umgekehrt lasst sich die Frage,
wann ein gegebenes Polygon sich m ein konvexes Polyeder verkleben lasst (und m
wieviele verschiedene) inzwischen durch einen effizienten Algorithmus beantworten.
Die vorliegende Arbeit untersucht die Frage, wann das Netz eines Polyeders so m zwei
oder mehr Teile zerschnitten werden kann, dass jeder Teil das Netz eines Polyeders ist.
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Fig 1

Note that this implies
S(P) S(P1)US(P2),

but not conversely. It certainly does not imply P P\ U P2.

Another example is shown m Figure 1(b). Here a 5-dipyramid is the parent of a 3-

dipyramid and a tetrahedron. For simplicity and brevity we shall use the terms "5-
dipyramid" instead of "pentagonal dipyramid", "3-prism" instead of "triangular prism",
and so on, throughout.

The examples just given are atypical; cutting the net of a polyhedron into two pieces does

not, m general, yield the nets of other polyhedra. For example, if any one of the eleven

possible nets of the cube (Figure 2(b) and [1]) is cut into two parts m any way, neither part
is the net of another polyhedron.

If the two offspring P\, P2 of a family P P\ IUI P2 are equal we call them twins. An
example is shown m Figure 3. Here P is the 5-antiprism with two regular pentagons and

ten regular triangles as faces. Each of the twins P\ and P2 is a 5-pyramid with one regular
pentagon and five regular triangles as faces.
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The above notation is extended m the obvious way to families of more than two offspring.
If we can cut the net of P into three pieces so that these pieces are the nets of polyhedra P\,
P2, P3 then we write P P\ luj P2 IUI P3, and so on. There are infinitely many families of
polyhedra and so, to make the subject manageable we introduce some restrictions. One of
these is to confine attention to convex polyhedra with regular polygons as faces. These will
be called regular-faced polyhedra. It is known that the regular-faced polyhedra comprise
the regular and archimedean polyhedra, the n-prisms and n-antiprisms (n > 4) and 92
other polyhedra known as the Johnson solids. The latter were discovered by Norman W.
Johnson m 1966 [5] and the fact that Johnson's list of regular-faced polyhedra is complete
was proved by Zalgaller m 1969 [8]. We shall refer to these polyhedra by the numbers
J1-J92 assigned to them by Johnson. A list can be found m Johnson's original paper and
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also m Wikipedia. Even restricting attention to the regular-faced polyhedra, the number of
families is m the thousands, hence we proceed as follows:

(a) In Section 2 we enumerate all families consisting of two twin polyhedra. Notice that
we do not use the term "twin polyhedra" when the family contains more than two
members, and

(b) m Section 3 we enumerate all families of polyhedra whose faces are regular (equi¬

lateral) triangles.

(c) Finally, m Section 4, we state some results of a general nature.
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2 Regular-faced polyhedra

Theorem 1. There exist 11 pairs of twin regular-facedpolyhedra.

Proof. For a polyhedron P we write fn (P) (3 < n) for the number of faces of P which are

n-gons. The vector f(P) (/3(F), /4(F), is called the /-vector of P. This vector
is, of course, finite; m fact fn(P) 0 for all n > 10 if P is any regular-faced polyhedron
(apart from the prisms and antiprisms). If

p px iuj p2 then f(P) f(/>0 + f(P2)

(but not conversely). Consequently, if a polyhedron P is the parent of twins P\ P2, then

every entry m the /-vector f(P) must be even and fn(P\) fn{Pl) \fn(P) for all
n > 3. In this case we shall say that f(P) is an even vector and write f(Pi) f(Pi)
\f(P)- Since the /-vectors of all the regular-faced polyhedra are known, this yields a

simple method of finding all the possible parents of twins.

Of the 92 Johnson solids and 18 Archimedean and regular polyhedra, 64 have even /-
vectors f(P). Of these 52 can be eliminated immediately as parents of twins since m
these cases \f(P) is not the /-vector of any regular faced polyhedron. For example,
f(J34) (20, 0, 12, 0, but there is no regular regular-faced polyhedron with /-vector
(10, 0, 6, 0, Of the remaining twelve, nine are the parents of twins, and there are two
others namely the 4-antiprism and 5-antiprism bringing the total number to eleven (Theorem

1 and Table 1). This leaves three possibilities to be investigated, namely J27, J28

Parent Twin offspring Diagram

octahedron tetrahedra Figure 5(a)
4-antiprism 4-pyramids Figure 5(b)
cuboctahedron Johnson solids J7 Figure 5(c)
deltahedron D\6 (J17) octahedra Figure 5(d)
Johnson solid J29 Johnson solids J8 Figure 5(e)
Johnson solid J31 Johnson solids J9 Figure 5(f)
Johnson solid J62 Johnson solids J2 (5-pyramids) Figure 5(g)
Johnson solid J84 Johnson solids J12 (3-dipyramids) Figure 5(h)
Johnson solid J85 Johnson solids J10 Figure 5(j)1
5-antiprism 5-pyramids Figure 3

icosahedron Johnson solids J13 (5-dipyramids) Figure 4(b)

Table 1 The eleven twin polyhedra with regular faces

and J30. However, checking these cases is not straightforward as can be seen from the

example m Figure 4. In Figure 4(a) we show the familiar net of the regular icosahedron
with /-vector (20, 0, This can be cut into two pieces each of which is the union of
ten triangles, but these are not nets of polyhedra.

1 J85 is remarkable m that the net of one twin is the enantiomorph of the net of the other In all other cases
the nets are equal
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However the less familiar net of the icosahedron shown m Figure 4(b) can be cut along the
solid line into nets of twin 5-dipyramids (J2) as shown, each with /-vector (10, 0, 0,
In Figure 4, and subsequent diagrams, the cut line is the solid line m the interior of the

net, and edge labellmgs are omitted; no ambiguities can arise m the case of regular-faced
polyhedra (in spite of the comments m [7]).

In establishing that the list of parents with twins m Theorem 1 is complete we have the

difficulty which seems inherent m this type of problem. Whereas it is straightforward to
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establish that a given polyhedron P has twins simply by drawing a suitable diagram, it is
not so easy to prove that the three polyhedra J27, J28, J30 are not the parents of twins.
After investigation we believe that this is so, but we have no proof. In a similar situation
(tessellation polyhedra) the analogous question was settled by computer, but it is difficult
to see how a similar method can be applied m the present case.

It is natural to ask whether, m view of the existence of twins, triplets, quadruplets and

quintuplets of regular-faced polyhedra can arise (clearly sextuplets are impossible). In fact
all these are possible but are very few m number. Examples will be given m the next
section. Note that the /-vector of the tnaugmented dodecahedron (J61) is (15, 0, 9, 0,

so one might expect it to have triplets each of which is the tridimmished icosahedron (J63)
with /-vector (5, 0, 3, 0, but it appears that it does not do so.

There are many examples of polyhedra P which have offspring which are siblings P\, P2

but are not twins, that is P P\ IUI P2 but P\ 7^ P2. A computer search for /-vectors of
regular-faced polyhedra P, P\, P2 that satisfy equation (1) yielded 118 solutions. Many of
these solutions lead to families of siblings, but some do not, and there are too many cases

(even m the case of regular-faced polyhedra) to investigate m detail. However, if we make
the further restriction that all the faces of the polyhedra are regular (equilateral) triangles,
the investigation becomes tractable, as we shall see m the next section.

3 Polyhedra whose faces are regular triangles
For brevity we shall use the term A -polyhedron for one whose faces are all regular
(equilateral) triangles. There are eight such polyhedra, namely

(I) the regular tetrahedron with fe 4,

(II) the 3-dipyramid J12 with fa 6,

(III) the regular octahedron with fe 8,

(iv) the 5-dipyramid J13 with fa 10,

(v) the deltahedron D\2 (J84) with fe 12,

(vi) the deltahedron D14 (J51) with fo 14,

(vn) the deltahedron D\§ (J 17 with fo 16. and

(vm) the regular icosahedron with fe =29.

All the other components m the /-vectors are zero. As the /-vectors have only one nonzero

component, relations between them are easy to find. In view of the comments m the

previous section, the following result is unexpected.

Theorem 2. Forpolyhedra P with regular triangles asfaces, every solution ofthe equation

f(P) =f(Pi)+f(P2) + f(P3)+ (1)

corresponds to the expression of two or more such polyhedra as offspring of P.

We prove this theorem by examining all such expressions. There are thirteen m which

f{P) is the sum of two /-vectors, eight m which it is the sum of three /-vectors, three
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Fig 6

8; 4, 4 octahedron tetrahedron IUI tetrahedron Figure 5(a)
10; 4, 6 5-dipyramid tetrahedron IUI 3-dipyramid Figure 1(b)
12; 4, 8 D\2 tetrahedron IUI octahedron Figure 6(a)
14; 4, 10 D\4 tetrahedron IUI 5-dipyramid Figure 6(b)
16; 4, 12 D\6 tetrahedron IUI D\2 Figure 6(c)
20; 4, 16 icosahedron tetrahedron IUI Di6 Figure 6(d)
12; 6, 6 Du 3-dipyramid IUI 3-dipyramid Figure 5(h)
14; 6, 8 Du 3-dipyramid IUI octahedron Figure 6(e)
16; 6, 10 Di6 3-dipyramid IUI 5-dipyramid Figure 6(f)
20; 6, 14 icosahedron 3-dipyramid IUI Du Figure 6(g)
16; 8, 8 Di6 octahedron IUI octahedron Figure 5(d)
20; 8, 12 icosahedron octahedron IUI D12 Figure 6(h)
20; 19, 10 icosahedron 5-dipyramid IUI 5-dipyramid Figure 4

Table 2 A-parents with two offspring

m which it is the sum of four /-vectors, and one m which it is the sum of five /-vectors.
These are tabulated below. The first column shows the value of fo for the parent followed
(after the semicolon) by the values fo of its offspring, the second shows the relationships
between the polyhedra, and the last gives a reference to a diagram showing the family.
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Fig 7

12; 4, 4, 4 D\2 tetrahedron y tetrahedron y tetrahedron Figure 7(a)
14; 4, 4, 6 D14 tetrahedron^ tetrahedron y 3-dipyramid Figure 7(b)
16; 4, 4, 8 Di6 tetrahedron luj tetrahedron y octahedron Figure 7(c)
20; 4, 4, 12 icosahedron tetrahedron y tetrahedron y £>12 Figure 7(d)
16; 4, 6, 6 Di6 tetrahedron luj 3-dipyramid IUJ 3-dipyramid Figure 7(e)
20; 4, 6, 10 icosahedron tetrahedron y 3-dipyramid IUJ 5-dipyramid Figure 7(f)
20; 4, 8, 8 icosahedron tetrahedron IUJ octahedron IUJ octahedron Figure 7(g)
20; 6, 6, 8 icosahedron 3-dipyramid IUJ 3-dipyramid IUJ octahedron Figure 7(h)

Table 3 A-parents with three offspring

16; 4, 4, 4,4 D\(s tetrahedron IUJ tetrahedron IUJ tetrahedron IUJ

tetrahedron Figure 8(a)
20; 4, 4, 4,8 icosahedron tetrahedron IUJ tetrahedron IUJ

tetrahedron IUJ octahedron Figure 8(b)
20; 4, 4, 6,6 icosahedron tetrahedron IUJ tetrahedron IUJ

3-dipyramid IUJ 3-dipyramid Figure 8(c)

Table 4 A-parents with four offspring
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20; 4, 4, 4, 4, 4 icosahedron tetrahedron luj tetrahedron luj

tetrahedron y tetrahedron y tetrahedron Figure 9

Table 5 A-parents with five offspring

4 General Remarks

Nets of polyhedra have been described by artists and others for nearly five centuries, and

examples of nets of familiar polyhedra can be found, for example, m [3]. The subject
of nets has largely been neglected by mathematicians, as one can see from the paucity
of published papers. There are, however, a number of open problems which have so far
defeated the efforts of competent mathematicians. The most noteworthy of these is: Does

every convex polyhedron have a net? This was stated explicitly by the author m 1975 [7].
The question arises because, as is a common experience with makers of polyhedral models,
thinking of the net as obtained by slitting a model of (the surface of) the polyhedron along
edges and opening it out flat, it can certainly happen that one part of the intended net may
overlap another, and so no net, as the term is used here (a region m the plane), is obtained.
In the early nineteenth century J.D. Gergonne assumed the answer to this question is m the

affirmative, but no proof is known. For a history of the problem and further information
see Problem 9 of the Open Problems Project [6] where it is suggested that m spirit, at least,

it goes back to Durer (1525) [4]. As no counter-examples are known, it seems reasonable
to assume the answer to this problem is m the affirmative.

We now make some general remarks on nets. Let E be the set of edges of a polyhedron P.
A net is obtained by slitting the surface S(P) of P along the edges of a subset E' c E. The
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union of the edges in E' must be a hamiltonian tree: it is a tree (a graph with no circuits)
because the resulting net is connected, and it is hamiltonian (contains all the vertices of P)
since otherwise it would not be possible to "open out flat" the surface S(P).
Thus every net of P arises from a hamiltonian edge-tree of P, but the converse is not true;
there exist hamiltonian edge-nets of polyhedra which lead to overlaps. Hence, in general,
the number of distinct nets of a polyhedron P is less than the number of hamiltonian
edge-trees on P.

For very few polyhedra is the number of distinct nets known. There are two for the regular
tetrahedron, eleven for the cube and eleven for the regular octahedron, see Figure 2 and [ 1].
There are nine for the 3-dipyramid and the same number for the 3-prism. (Enantiomorphs
are not counted as distinct.) All these have been determined empirically, and there seems
to be no general method of determining these numbers. The number of distinct nets of, for
example, the cuboctahedron seems to be unknown.

Associated with a polyhedron are the three numbers (integers) f(P),e(P), and v(P), the
numbers of faces, edges and vertices, respectively, which satisfy the well-known Euler
equation

f(P) - e(P) + v(P) 2. (2)

For a net A there are four numbers, namely /(A) and v(N) the numbers of faces and
vertices of A, eb(N) the number of edges on the boundary of A, and et (A) the number of
edges in the interior of A. Euler's theorem for a planar region yields

/(A) - eb(N) - et(N) + v(N) 1. (3)

Theorem 3. The numbers v(P), e(P), f(P), v(N), et(N), eb(N), and /(A) satisfy the

following relations:

(i) /(AO f{P\
(ii) eb(N) 2(v(P) - 1) f(A),
(iii) et(N) f(P) - 1.

Statement (i) is obvious. For (ii) we note that the hamiltonian tree T has v(P) — 1 edges,
and each edge gives rise to two boundary edges of the net. The final part follows from (i),
(ii), (2), or alternatively by observing that every two of the f{P) polygons in the net is

separated by an interior edge.

Theorem 3 has the unexpected consequence that all nets A of a given polyhedron P have
the same values of eb(N) and et (A). Thus both nets of the tetrahedron (Figure 2(a)) have

eb(N) 6 and et (A) 3, and all eleven nets of the cube (Figure 2(b)) have eb(N) 14

and et (A) =5.
Let P' denote the dual of the polyhedron P. As the polyhedra P we are considering are

convex, a dual P' can be defined as (the combinatorial type of) the polar reciprocal of P
with respect to any interior point. Clearly f(P) v(P'), e(P) e(P'), and v(P)
f{P'). Further, if N' is a net of P' then

Theorem 4. eb(N') 2et(N) and2et(Nf) eb(N).
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Fig 10

This follows because eb(N') 2(v(P') - 1) 2(f(P) - 1) 2et(N), and 2el(N')
2(/(P') - 1) 2(v(P) - 1) eb(N).

Thus all the nets Nf of the octahedron P', shown in Figure 2(c) have eb{N') 2et (N)
10 and et (Nr) eb(N)/2 7 as is easily verified.

However, we can say more. Suppose the net N of P was constructed using the hamiltonian
tree T. Then construct a new tree T" as follows. The nodes of T" are the polygons in T
and two such nodes are joined by an arc if the corresponding polygons have an edge in
common. It is clear that this is a tree, and since the faces of P correspond to the vertices
of p> j/r corresponds to a hamiltonian net Tf on P', and thus to a net N\ which we
shall refer to as the dual of N. Hence the number of distinct nets of a polyhedron P and

of its dual P' are equal. (In Figure 10 we show a cube with two dual trees marked on it.
One, indicated by solid thick lines shows the tree that leads to the net marked by a black

square in Figure 2(b), and the dual net, indicated by grey lines leads to the net of the
octahedron marked by a black square in Figure 2(c).)

Clearly dual nets on the surface of a polyhedron are disjoint, and moreover are maximal in
an obvious sense. Thus duality of polyhedra implies a duality between their nets. In Figures
2(b) and (c) dual nets of the cube and octahedron appear in the same relative positions in
the diagrams. However, we cannot assert that just because a tree T of P leads to a net of
P, the tree T" necessarily leads to a net of P'. Moreover, the property of having a family
does not dualise. We have remarked that the cube does not have any offspring, but three of
the nets of the octahedron (marked by an asterisk in Figure 2(c)) have twin offspring - in

every case tetrahedra. The idea of dual trees is not new (see [2, Fig 1.4A] for dual trees of
the regular icosahedron and dodecahedron). However the concept of dual nets seems to be

introduced here for the first time.

We conclude with a simple observation about the nets of polyhedra in a family.

Theorem 5. Suppose
P px iuj p2 iuj... iuj pn.

Then

(i) £"=i f(Pj) f(P),
(ii) j:nJ=le(Pj) e(P),

(iii) £"=1 v(Pj) v(P)+2(n-l).
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Statement (1) is clear and (111) follows since every two adjacent nets Nj have two
vertices m common and there are n — 1 adjacencies. Statement (11) then follows from Euler's

equation (2).
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