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1 Introduction
We take a Möbius geometric look at the in- and ex-centres of a triangle m the Euclidean
plane: at first this appears to be an absurd endeavour as the centres of circles are not
Möbius geometrically attached to their circles. But surprisingly, it turns out that there is
a symmetric, Möbius geometric construction of the four in- and ex-centres of the triangle

In der Möbius-Geometrie der Ebene sind Kreise und Geraden (als Kreise durch den

unendlich fernen Punkt der Ebene) nicht unterscheidbar. Die übliche Konstruktion der
In- und Ankreismittelpunkte eines Dreiecks macht daher mobiusgeometrisch keinen
Sinn; erstaunlicherweise lassen sich jedoch diese Zentren eines Dreiecks auch kreis-
geometnsch konstruieren. Genauer: es gibt Mobius-Transformationen, die die Ecken
des Dreiecks und den unendlich fernen Punkt der Ebene auf die An- und Inkreismit-
telpunkte abbilden. Eines der beteiligten Symmetriezentren ist Thurstons Symmetriezentrum

des idealen Tetraeders im hyperbolischen Raum, dessen Ecken die Ecken des

Dreiecks und der unendlich ferne Punkt sind. Dieses Tetraeder, das von den In- und
Ankreiszentren geformte Tetraeder und das Tetraeder der vier Symmetriezentren bilden
ein desmisches System im umgebenden projektiven Raum. Auf diese Weise ergeben
sich Interpretationen der Konfiguration m der Euklidischen Geometrie, der Mobius-
Geometrie und der projektiven Geometrie.
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when considering it as a quadrangle m the conformal 2-sphere S2 R2 U {oo}, by using
the point at infinity as the fourth point. This has been shown m [4]; here we present an
alternative approach.

Perhaps even more surprisingly, it turns out that the obtained configuration of two sets

of four points with six interconnecting circles naturally belongs to a spherical geometry:
considering each of the two quadrangles as the vertex set of an ideal tetrahedron m hyperbolic

space (by thinking of Möbius geometry as the "boundary geometry" of hyperbolic
geometry) each can be equipped with Thurston's centre of symmetry [5]; it turns out that
the two centres coincide and define an antipodal map that exchanges the m-centre with the

point at infinity and the ex-centres with their corresponding vertices. In this way, we obtain
a "symmetry breaking phenomenon" for this very simple geometric configuration - this
antipodal map defines a natural round metric on the conformal 2-sphere, hence leaving us

with the smaller symmetry group of spherical motions.

Clearly both these observations lead to implications for the Euclidean configuration of a

triangle with its in- and ex-centres. In particular, we obtain an 8-element abelian symmetry

group of the configuration, consisting of Möbius involutions. Of course, triangles m
Euclidean geometry have been studied for millenia and it seems unlikely that these
implications were not known to some of our illustrious ancestors. However, we have not been
able to locate them m the literature so far.

In any case, we hope that the present note can contribute towards a better understanding
of the interplay of different geometries: m our case, of

• Euclidean and spherical geometries as subgeometnes of Möbius geometry; and of

• Möbius geometry as a boundary geometry of hyperbolic geometry.

Acknowledgements. We would like to express our gratitude to our colleagues D. Calder-
bank, G. Smith, and T. Soma for fruitful and enjoyable discussions around the subject.
Also, we would like to thank the referee for valuable comments on the first version of the

paper.

The figures m this text were produced using the excellent geometry sketchpad CaRMetal.

Finally, we gratefully acknowledge financial support by JSPS through the first author's

long term fellowship grant L-08515, without which we would probably not have started

our collaboration on this beautiful topic.

2 Setting the scene

We shall start with a brief introduction to the projective model of Möbius geometry used

m this article; we hope to provide all essential background for what follows m this way.
However, we cannot give a full introduction to Möbius geometry here and the interested
reader is referred to Blaschke's classic [1] or to [2] for more comprehensive expositions.

The fundamental idea is to embed the conformal 2-sphere S2 R2 U {oo} into projective
3-space RP3 as an absolute quadnc, that is, as the projective light cone of a Minkowski
R3

S2 PC3 where C3 {X (XUX2, X3, X4) e R3 1
| |X|2 0}
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denotes the light cone of R3 1 and |A|2 A2 + X\ + X2 — A| is the quadratic form
of the Minkowski inner product on R3 1. Accordingly, vectors m the light cone are
called "light-like", whereas vectors with |X\2 > 0 or |X\2 < 0 are called "space-like" and

"time-like", respectively. Thus points m S2 C RP2 are light-like lines in R3 1.

In this realm, circles can be identified with points "outside" S2 C RP3 via polarity. In
terms of linear algebra, if c e R3 1

is space-like, i.e., \c\2 > 0, so that Rc is a point
"outside" S2 C RP3, then its orthogonal complement c1- is a Minkowski subspace that
intersects the light cone £? m a 2-dimensional light cone, that is, the projective plane

p given by cL C R3 1 intersects S2 m a circle. In terms of projective geometry, p is
the polar plane of Rc with respect to the absolute quadnc S2 C RP3, that is, the two
intersection points of S2 with any line in R?3 through Rc separate the points Rc and

in p harmonically. In particular, Rc is the vertex of the cone inRP3 that touches S2 along
the corresponding circle p D S2. This also explains why the ambient geometry needs to be
chosen projective: the vertex of a cylinder, touching along a great circle m S2, ends up m
the plane at infinity of RP3.

Thus circles m S2 C RP2 are identified with space-like lines m R3 *, and incidence of a

circle and a point is encoded by polarity: a point RA lies on the circle given by Rc if and

only if X _L c.

Normalizing, a circle becomes a pair of antipodal points on the Lorentz sphere

S11 {c e R3 1
I |c|2 1},

where each point of the pair (or, equivalently, each ray on the corresponding space-like
line) can be thought of as representing an orientation of the circle1^. Thus S2 1 becomes
the space of oriented circles m S2 R2 U {oo}.

Clearly, any Lorentz transformation

A G 0(3, 1) {A G G/(4) | (AX, AY) (A, Y)}

descends to a projective transformation of RP3 that preserves the absolute quadnc S2 C
RP3. Hence it acts simultaneously on points and circles m S2, preserving the incidence
relation. In this way, any Lorentz transformation defines a unique Möbius transformation

/x S2 S2, that is, a global conformal transformation of S2. Conversely, any Möbius
transformation of S2 comes from a Lorentz transformation A of R3 1

m this way, A being

unique up to sign. In particular, the inversion of S2 m a circle given by c e S2 1

comes
from a polar reflection

RA R{A — 2(A, c) c}

of RP3 or, equivalently, from the usual reflection of R3 1

m the Minkowski subspace c±.
Note that the action of this polar reflection on the "outside" of S2 C RP3 yields the action
of the inversion on circles:

s21 3 c' =F(c - 2(c\ c) c)e S21

b Classically, Möbius geometry only deals with unonented circles but, m our quest, orientations will be of
assistance
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maps a normalized representative of a circle c' to a normalized representative of its image,
preserving or reversing orientation of the circle c of inversion.

Finally note that the "mside"

H3 {RF G RP3 | \Y\2 < 0}

of S2 C RP3 can be interpreted as a Klem model of 3-dimensional hyperbolic geometry:
the hyperbolic lines are the segments of projective lines that intersect S2 m two points,
and the hyperbolic motions are the restrictions to the 4'inside ball" H 3 c RP3 \ S2 of
projective transformations that preserve S2 as the infinity boundary of hyperbolic space,
that is, of Möbius transformations of S2 or, equivalently, Lorentz transformations of R3 1

up to =bid. In this sense the Möbius geometry of S2 becomes the "boundary geometry" of
3-dimensional hyperbolic geometry.

We shall make these ideas more tangible by providing some explicit formulas: consider

R3 1 R2 0 R1 1 with R1 1

span{<9, oo},

where o, oo are light-like with (o, oo) — 1, say, o ^(0, 0, —1, 1) and oo (0, 0, 1, 1).

Now, denoting
Q2 {Y g C3 | (oo, Y) -1},

the map
\x I2

R2 3 X I—> X o x ^—
00 G Q2

is an isometry between 2-dimensional Riemannian manifolds; note that, for X, Y e Q2,

<*.,-)

Note the similarity of the formula, using o and oo as above, with inverse stereographic
projection. Indeed, our isometry R2 —> Q2 is obtained by

• first mapping R2 3 x \-> \x\2 — 1) £ S2 C R3 by inverse stereographic

projection (cf. Fig. 11),

• next embedding R3 R3 1
as the affine hyperplane X4 1, and

• finally rescalmg the light cone vectors to obtain an isometry2).

We will henceforth drop the notational distinction between points or circles m S2 and their
representing vectors m R3 1.

Lines (that is, circles through the point 00) and circles can now be written as

I n + {x, n) 00,

1/ \m\2 — r2 \ 1/ |v|2 \
c -[0 + m H 00 (n + {x, n) 00) H— o + v H 00r\ 2/ r\ 2/

2fin fact, stereographic projection can be thought of as a simple rescalmg S2 {X \ X4. \} 3 X
— e Q2 when identifying Q2 M2
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respectively. Here, a circle is given by its radius r e R and either by its centre m e M or
by a point v on the circle and the normal n at that point so that m x + rn. Note that

we take r < 0 if the circle c is oriented so that its normal n is pointing outwards (cf. [ 1,

§§12-14]). The formula for a line is obtained as a limiting case, as r -> =boo.

We also obtain an interpretation for inner products: for F e fi2,

(/, Y) (y -x,n) hi

is the (oriented) height of the point y above the line I and

r2 — \y — m\2
(c, Y)

2r

confirming that incidence is encoded by orthogonality:

y G I O (/, Y) 0 and y e c O {c, Y) 0

Also, the curvature a: of a circle or a line is given by its scalar product with oo:

(/, oo) 0

<£> K — (c, 00)

reflecting, m particular, that lines are those circles that contain the point at infinity.

(c, oo) —-
r

Fig 1 Intersection angle of two oriented circles

changing the orientation of one circle yields
the supplementary angle

Fig 2 Tangential distance of two oriented circles

changing the orientation of one circle gives a

different tangent line

Computing the scalar product of two circles c, c' e S2 1

| mr — m |2 — (r2 + r/2)
(c,cf) -- 2rr'

m terms of their centres and radii readily reveals that {c,cf)2 < 1 if and only if the two
circles intersect. Assuming that c and c' have a common point x, this scalar product

(c, c (/ H—X, lf H—-x) (/, lf) {n, n) cosZ(c, c)
\ r r I
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yields their oriented angle of intersection; m particular, two circles c, c' intersect
orthogonally if and only if c _L c' and they are m oriented (or orientation reversing) contact if
and only if {c, c') — 1 (or {c, c') — —1). Note that, m case the two circles have a common
(oriented) tangent line /, their scalar product can be interpreted m terms of their tangential
distance:

/ / 1 1 A \xr — x\2
<cy) + -X,; + -x') i-L_L

As any two lines have the point at infinity m common, their scalar product gives the angle
of intersection, or it is 1 (or —1) for parallel (or anti-parallel) lines that touch at oo.

Finally, we recall the notion of a "circle pencil", that is, the configuration of circles that

belong to a line lnIP3 or, equivalently, to a 2-plane it c M3 1. These come m three
different flavours.

• Elliptic circle pencils, where the line does not meet S2, i.e., where it is a Euclidean
plane: the circles m it are those that contain the two points given by the null lines m
it1.

• Hyperbolic circle pencils, where the line intersects S2 transversally, i.e., where it is
a Minkowski plane: we get those circles that are orthogonal to all circles mit1 -
if oo e it then we obtain concentric circles with their common centre given by the
second null line m it.

• Parabolic circle pencils, where the line touches S2, i.e., where it has a degenerate
metric: here, the null line m it defines a point v m which all the circles of the pencil
touch - note that, m this case, it Hit1 span{X} and it + it1 yields the complex
of all circles containing v.

Fig 3 Orthogonally intersecting hyperbolic (black, Fig 4 Two parabolic circle pencils (or, "contact

containing two point circles) and elliptic (red) elements") that intersect orthogonally at the
circle pencils point x

3 The in- and ex-centres of a Euclidean triangle

Now fix a non-degenerate triangle (A, B, C) m R2 Q2: thus A, B,C 6 Q2 and

(A, B,C, oo) form a basis of R3 1. Let a, b and c denote the sides of the triangle, as

usual opposite to A, B and C, respectively: thus a e S2 1
is the circle through B, C and
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oo, etc.; we fix the orientations of a, b and c so that the corresponding heights are positive:

ha {a,A), hb {b, B), hc (c, C) > 0.

Note that (a, b), (b, c) and (c, a) each span an elliptic circle pencil with (oo, C), (oo, A)
and (oo, B) as their respective intersection points; on the other hand, a, b and c have only
one common intersection point oo, reflecting the linear independence of a, b and c.

We now seek the in-circle i of the triangle, that is, a circle i e S2'1 that has oriented contact
with all three sides of the triangle. In particular,

1 (/, a) (/, b) (/, c) =>- i .La — b,b — c,c — a,

that is, we seek i in the circle pencil given by the angle bisectors of the triangle. To see

this, first note that

b — c _L oo, A and {b — c, b) + {b — c, c) 0

showing that b—c is a line through A so that its angles with b and c add up to tt that is, b—c
bisects the (inner) angle of the triangle at A; similarly c — a and a —b are the (inner) angle
bisectors of the triangle at B and C, respectively. Secondly, dim span{a — b,b — c,c — a}
2 as a, b, c are linearly independent so that

spanfa — b,b — c, c — a} =: rj

defines an elliptic or parabolic circle pencil since oo G J]1. From Euclidean geometry we
know that rj defines an elliptic circle pencil with oo and the in-centre as its two intersection
points; we shall confirm this using our Möbius geometric setting.

-(a+b)

c-b V

B

Fig. 5 The in-centre construction of a triangle: the
orientations of the sides pick the inner angle
bisectors.

Fig. 6 The ex-centre construction for a triangle: a

swap of orientation of one side changes two
of the angle bisectors.

To this end we first derive a formula for the circum-radius R of our triangle: let la, lb and

lc denote the side lengths of the triangle and F its area; then

R
la^b^c

4F
2FL lb l2chc

2 2F 2F 2hahb

(A,B){c,C)
(a, A) (b, B)

'
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Lemma 3.1. The circum-radius R of the triangle (A, B, C) C Q2 satisfies

I A B \ I CH, -, R oo
\ {a, A)' {b,B)l \(c,C)'

Clearly two more formulas are obtained by permutation. As a consequence,

+
B

+
C

{a, A) (b,B) (c,C)
2R(oo +

B
+

C

(a, A) (ft, 5) (c,C)

further,

(oo, +
B C

{a, A)
'

{b, B)

yields the m-radius. Hence

A B

(c,C)

1 1 1

^ha^hb^hc

+ +
C

— loo
2 1

2—
R

la A-lb A- lc

IF

if X R

if 1 R 4{a, A) (b,B) (c,C)

providing explicit formulas for the m-centre and m-circle:

Lemma 3.2. The in-centre I and in-circle i ofa triangle (A, B, C) C Q2 are given by^

ABCI + +
(a, A) (b,B) (c,C)

R oo and i I oo

Proof Clearly, {i,a) (z, &) {i,c} 1 establishing z e S2 1
as the m-circle of the

triangle. Moreover,
/, oo G r)1- {a — b, b — c, c — a}1'

showing that r] defines an elliptic circle pencil4^ consisting of the lines through I and

intersecting the m-circle z perpendicularly since

z g span{oo, 1} z?1

Consequently, the (second) intersection point I of the (inner) angle bisectors a — b,b — c
and c — a of the triangle is, not surprisingly, the m-centre of the triangle5^.

The ex-circles and ex-centres of the triangle can now be constructed m a very similar way,
by simply changing our mind about the orientation of one of the edges: to construct the
ex-circle opposite the point A, say, we seek a circle

jA -L spanfa + b, a + c, b — c} a,
again, we obtain its centre Ja as the second point of intersection of the circles m the elliptic
circle pencil given by a and the ex-circle itself as an appropriate circle m the orthogonal
hyperbolic pencil span{oo, Ja}. Thus, similarly to the proof of Lemma 3.2 we obtain:

Scaling I by the m-radius provides the representative rl e Q2

4^Here we use that (A B C) is a non-degenerate triangle, so that R < oo

5)Alternatively, we could argue that oo — 2(oo i) i oo+2(I — |oo) || I, that is, the inversion m i interchanges

I and oo and, hence, I is the centre of i
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Lemma 3.3. The ex-centre Ja and ex-circle ja opposite A ofa triangle (A, B, C) C Q2

are given by

ABC rAJa R oo and ja — Ja — — oo,
{a, A) (b,B) (c,C) 2

where rA denotes the corresponding ex-radius,

-(oo,
I I A B C

+
rA \ {a, A) (b,B) {c,C)i

The ex-centres Jt, Jc and corresponding ex-circles jb, Jc are given by similar formulas.

Note that changing orientation of two or all three edges of our triangle does not provide
new circles via the described construction: we just obtain the ex- and m-circles with opposite

orientations.

Also note that, as a simple consequence, we obtain the well-known formula relating the

in- and ex-radn of a triangle:
1 1 1

_
1

rA rB rc r

4 The conformal dual of four points
We shall now pursue a geometric construction that explains the striking symmetry that
we observe m the formulas for the in- and ex-centres of a triangle given m Lemmas 3.2
and 3.3.

In the previous section we have investigated the geometry of a Euclidean triangle - the

geometry of a triangle m the presence of a distinguished point oo, which also provided a

distinction of lines as those circles containing oo. We shall now drop this distinction of a

special point and consider the geometry of a non-concircular quadrangle6) (A, B, C, D) e
S2 without distinguishing one of the four points7).

Thus let (A, B, C, D) C S2 be a quadrangle m the conformal 2-sphere, and let

a,b,c,d e S21 ={Y e R3 1
| |T|2 1}

represent the circles containing all but one of the points of the quadrangle, that is, a is
the circle through B,C, D, etc. We choose the orientation of each circle so that its normal

points into the component of its complement m S2 which contains the corresponding
pomt8\ Finally, we fix homogeneous coordinates9),

A, B, C, D g C? {Y e R3 1
| |T|2 0}

6)As any two triangles are Möbius equivalent, a quadrangle is the simplest geometric configuration of interest m
Möbius geometry
7Tor illustrative purposes as well as for proofs it will, however, often be convenient to consider one of the points,
say D, as the point at infinity of a Euclidean plane We shall primarily be interested m geometric properties of
the configurations that remain invariant under the full symmetry group of Möbius transformations though
^Reversing orientation of two of these circles would not change much, m particular, the alternate segment
theorem (Lemma 4 3) would not be affected we shall come back to this point later
^Remember that we do not distinguish notationally between a point in S2 c MP3 and a homogeneous coordinate

vector of this point m £? c M3 1
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so that (a, b,c,d) and (A, B,C, D) form dual bases of R3'1: A _L b, c, d since the circles

b,c, d intersect in the point A, etc. Hence, by a suitable choice of homogeneous coordinates,

we can achieve that

1 (a, A) (b, B) (c, C) {d, D)

while all other pairings using the scalar product vanish. Note that, in general, A, B, C,
D g Q2 as they are now differently normalized.

Observe that by considering D as the point at infinity of S2 R2 U {00} we make contact
with the Euclidean triangle geometry of the previous section:

• the homogeneous coordinates of the points A, B and C are now rescaled, A i->

etc.;

• the circle d becomes the circum-circle of the triangle (A, B, C), oriented so that its
normal points outwards, that is, its radius becomes — \R\ < 0; and

• ° Ä 1*100.

Fig. 7 Orientations of four circles through three of Fig. 8 A Möbius geometric in-centre construction:
four points: the point not on the circle always here, A takes the role of the point at infinity of
lies on the side the positively oriented normal a Euclidean plane to obtain the point A!.
points into.

Hence we obtain now a completely symmetric set of formulas for the ex-centres A\ B',
C and the in-centre D' of the triangle (A, B, C) c Q2 from Lemmas 3.3 and 3.2:

A'= X-{-A + B + C + D},

B' l{A-5 + C + D},

C' =X-{A + B -C + D},

D' l{A + 5 + C-D}.

From this symmetry it becomes clear that the ex-centres can alternatively be obtained by
an in-centre construction when the appropriate point is considered as the point at infinity:
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for example, A' can be constructed as the in-centre of the triangle B, C, D when A is
considered as the point at infinity.

A Möbius geometric formulation of this fact reveals a more symmetric picture of the
situation, cf. [4, Lemma 1.5]:

Theorem 4.1. The ex- and in-centres ofa triangle in Euclidean space can be constructed
in a symmetric, Möbius geometric way from the vertices of the triangle and the point at
infinity.

Proof Fix one point of the quadrangle (A, B, C, D) C S2, say A; we wish to construct
A' by Möbius geometric means. Thus let ia denote the (unique) circle in oriented contact
with the three circles b,c,d - then A' is obtained by inverting A in the circle ia-

Equivalently, A' can be obtained as the second intersection point of the elliptic circle pencil
spanned by the circles b — c, c — d and d — b through A and bisecting the angles between
b and c at D, c and d at B, and d and b at C, respectively.

This latter construction characterizes the quadrangle (A', B\C\ D') as the "conformal
dual" of (A, B, C, D) in the sense of [4, Def. 1.2]:

Definition 4.2. (A', B', C', D') is called the conformal dual of the non-circular quadrangle

(A, B, C, D).

Below, we shall provide a new proof for [4, Thm. 1.4], confirming that this yields a sensible
notion of "duality", that is, that

First note that the dual quadrangle is, as the original (A, B, C, D), in general position, that

(A", B\ Cf D") (A, B, C, D).

d

A

Fig. 9 The alternate segment theorem: the angle
between the secant and the tangent to the

circum-circle equals the inscribed angle in the
alternate segment of the circle; hence

{a,b} {c, d).

Fig. 10 The "conformal dual" of a quadrangle: the

points A!, B', C' and D' are obtained by
Möbius geometric in-circle constructions,
considering A, B,C and D as the point at

infinity, respectively.
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is, (A', B', C', D') is a basis of R3 l; further,

clearly define its dual basis,

<*', Y') <W
1 if Y' X',
0 otherwise

Moreover, ar,br,cr,dr e S2 1 define oriented circles:

Iß'l2 — 1 +
((c, J) — (a, b)) + ((Z>, J) — (a, c)) + ((Z>, c) — (a, J))

2

by the following lemma, complementing the formulas

{A,B) {C, D)

as obtained from Lemma 3.1:

Lemma 4.3. Pairs ofopposite circular edges ofa quadrangle {A, B,C, D) C S2 intersect
at equal angles:

Proof Considering one of the points, say D, as the point at infinity of S2 R2 U {oo},
this lemma becomes the alternate segment theorem and is a direct consequence of the

generalized Thales theorem (or, "inscribed angle theorem"): the inscribed angle over a

secant is half the central angle which, m turn, is the angle that the secant makes with the

tangent to the circum-circle; the angle between c and d is the supplementary angle of the
latter whereas the angle between a and b is the supplementary angle of the former.

Now, as ib' — c') + (b — c) 0, etc., we learn that the original quadrangle is constructed
from its dual m the same way the dual is from the original, cf. [4, Thm. 1.4]:

(ia, b) (c, d)

A,A' Lb' -c',c' -d',d' -b'
Theorem 4.4. The notion of "conformal duality " is symmetric,

(A", B", Cf D") (A, B, C, D)
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5 The conformal centre of four points
We shall now give another description of the relation between a quadrangle and its dual,
that is, between a Euclidean triangle and its in- and ex-centres, that is palpably symmetric.

Definition 5.1. We define the conformal centre Z of our quadrangle (A, B, C, D) C S2

by:

Z -(A + ß + C + D)

Recall that we chose homogeneous coordinates A, B,C, D e C? of the four vertices of
our quadrangle that were uniquely determined by the geometry of the quadrangle so that Z
is well defined; also recall that, applying Lemma 3.1 to these vectors, we obtain (A, B)
(C, D) while Lemma 4.3 provided us with (a,b) {c, d) Hence |Z|2 2(Z, A) and

similarly for B, C and D. Writing Z m terms of the dual basis (a, b,c,d) now yields

1
9Z (Z, A)a + (Z, B)b + (Z, C)c + (Z, D)d -\Z\2{a + b + c + d)

implying10\ m particular, that |Z|2 0 - so that reflection m Z1 yields an interesting
Möbius involution of S2:

Lemma 5.2. The Möbius involution

ß S2->S2, Xt-+-\x-2 'Zlfiz1

|Z|2

exchanges the quadrangle (A, B, C, D) and its conformal dual (Ar, Br, Cr, Dr):

/ z /li(A) Z — A A and 11(a) ^ — u u • cA'.
Izl

Observe that

Z i(A + Z? + C + D) A + A/ i(Ar + + Cr + Dr)

so that Z Zf is also the conformal centre of the dual quadrangle. Thus we obtain an
alternative proof of Theorem 4.4. Also, as /x is orientation reversing, we obtain a new
proof of [4, Thm. 1.8]:

Corollary 5.3. The cross ratios ofconformally dual quadrangles are complex conjugates
ofeach other.

In order to understand the geometry of Z and the corresponding involution /x better,
consider the circle pencils

7r± span{a =b b, c =b d}

10)We could also argue here that Z is a convex combination of vectors m one component of £3, implying that
|Z|2 < 0 However, we shall provide another, more geometric proof of this fact below, after clarifying the

geometric setup
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By Lemma 4.3, a =LZ? _L c=pd so that the circle pencils tt + and tt~ are orthogonal. We wish
to show that ix~ defines an elliptic circle pencil: consider D — oo as the point at infinity;
then d is the circum-circle of the triangle (A, B, C) and c — d is a circle containing A and
B \ on the other hand, a —bis the inner angle bisector of the triangle at C, hence intersects
the side c between A and B, that is, m the mside of the circle c — d. Consequently, a — b

and c — d intersect m two points and, therefore, define an elliptic circle pencil.

Now consider the projective transformation on RP3 given by rotation by 0 m the

(Euclidean) plane ix ~:

• on the one hand, this yields a Möbius transformation of S2 C RP3 that fixes each

circle m the pencil tt+ - if we regard one of the two point circles m the pencil as the

point at infinity we obtain a rotation around the other;

• on the other hand, if we consider the interior of S2 C RP3 as the Klem model of a

hyperbolic 3-space, this yields a hyperbolic rotation with the hyperbolic line defined

by tt+ as its axis.

If we choose, m particular, the rotation angle 0 tt then this transformation

a + b a
_i_ - b

1 ^
a -\- b a -b

2 ir 2
1 ^

2 2

a -\-b a - b
1 ^

a -\-b a
_i_

-b
2 2

1 ^
2 ir 2

c -\- d c
_i_ - d

1 ^
c -\- d c -d

2 ir 2
1 ^

2 2

c -\- d c - d
i ^

c -\- d c
_l_ -d

a,

d,

d — i—^ c,
2 2 2 2

hence it acts as a permutation on the quadrangle (A, B,C, D),

(A, B, C, D) i-> (B, A,D,C),

and thus provides one of the three non-trivial symmetries of the ideal tetrahedron m
hyperbolic 3-space with our quadrangle as its ideal vertices, cf. [5, Ch. 4]. By symmetry, we
obtain three such hyperbolic rotations, pab, pac and pad, with axes given by

spanfa + b, c + d}, spanfa + c, b + d} and spanfa + d, b + c},

respectively; these axes intersect orthogonally, e.g., {(a-\-b) — (c+d), (a+c) — (b-\-d)) 0

by Lemma 4.3, so that the Qxy form a Klem four-group. Moreover, the axes intersect m a

unique point m hyperbolic space,

R (a -\- b -\- c -\- d2) M Z

Theorem 5.4. Considering the interior of S2 C RP3 as a Klein model of hyperbolic
space, the conformal centre Z of a quadrangle (A, B, C, D) C S2 is Thurston's hyperbolic

centre ofsymmetry of the ideal tetrahedron with ideal vertices A, B, C and D.
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Apart from providing another geometric interpretation for the conformal centre of a

quadrangle in S2, this also yields further insight into the geometry of the involution /x.

First note that from

2{A, Z) — \Z\2 and 2(A', Z) 2(Z — A, Z) — |Z|2,

and similarly for B, C and D, we learn that

{A, B, C, D), (A', B', C', D') c S2 := |f e £3 (y, 2^) l}
IZ |

that is, our quadrangles lie in a round 2-sphere with curvature see [2, Sect. 1.4]. The

point \z is the centre of S2 in its (Euclidean) affine hyperplane in R3,1 and /x becomes

the antipodal map of S2. Hence we obtain the following result for Euclidean triangles:

Theorem 5.5. Given a quadrangle (A, B, C, D) e S2 with centre of mass A+B+C+D

at the centre of S2, stereographic projection from D maps the antipodal quadrangle
(Ar, Br, Cr, Dr) to the ex- and in-centres of the triangle obtained by stereographic

projection of (A, B, C).
Conversely, given a triangle (A, B, C) C Q2 in the Euclidean plane, a suitable (inverse)
stereographic projection to S2 maps

• its in-centre to the antipodal point of the centre oo of the stereographic projection
and

• its ex-centres A', B' and C' to the antipodal points of the images of A, B and C,

respectively.

To make the latter claim of this theorem more tangible we specify the "suitable"
stereographic projection, by specifying the equator e e S2,1 of S2 in the Euclidean plane - the

stereographic projection will then be from the north pole of S2 onto the equator plane.

Fig. 11 The inverse stereographic projections 5 (A) and Fig. 12 Inverse stereographic projection of the pairs
s(A') are antipodal, 5(A) + s(A') M, iff (A, A'), etc., yields antipodal points on the

(A — M, A! — M) + |N — M|2 0. sphere: inversion of A' in the equator gives a

pair (A, A") that is symmetric with respect
to the centre D' of the equator.
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As the m-centre will be obtained by stereographic projection of the south pole, the equator
of S2 has to be centred at the m-centre of the triangle. Further, for a triangle vertex and its
corresponding ex-centre to be projections of antipodal points, the geometric mean of their
respective distances to the m-centre has to be the radius of the equator - m particular, the
three geometric means associated to the three vertices of the triangle have to be the same.

In order to verify this fact, we use the notations and normalizations of this section, that

is, (A, B, C, D) and (a, b, c, d) are dual bases of R3 *, and we take oo — with the
circum-radius R < 0 to represent the point at infinity. Denoting by Ia d' and Ia'd' the

respective distances of A and the ex-centre A' to the m-centre D', we obtain

I2 I2 -4/ A D' V D' \ -
4R4

AD'A'D'- \ (A, oo)' (D', oo) A (A', oo)' (D', oo) / ~ (D', D)2

since (A, B) (C, D), etc., by Lemma 3.1. Hence, the radius of the equator can be
chosen consistently. Indeed, the antipodal map /x can be decomposed into three inversions
m orthogonal great circles of S2 - choosing two of them as reflections m orthogonal lines

through the m-centre D\ the third becomes the inversion m the sought equator e\ hence

D — D D' - D
e

\Dr — D\ V-2<D',D)'

as D' — D _L r] span{a — b,b — c,c — a} and D/-D1D/ + D Z; note that, indeed,
the radius of e is

I _RV=TjWIT) _ _L_ 2V=7R.
(oo, e) -{Df,D) ]j {Df, D) ]jR{i,oo)

where, from Lemma 3.2, i 2D' mod D is the m-circle of the triangle and r > 0 its
radius.

6 The Möbius symmetries of dual quadrangles

We have already seen four symmetries of a dual pair of quadrangles, that is m Euclidean
terms, of the two quadrangles formed by the point at infinity and a triangle and by its m-
and ex-centres, respectively:

• the antipodal map /x which interchanges the two quadrangles, and

• the three hyperbolic rotations pab, etc., which simultaneously interchange pairs of
points m both quadrangles - note that these rotations act on the dual quadrangle m
the same way as they do on the original since they commute with the antipodal map.

As /x commutes with each rotation Qxy, these transformations generate an 8-element
symmetry group of the configuration. To identify the remaining symmetries m this group, we
introduce

Zad =^{A - B - C + D) A - D' D - A'
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Observe that Zad 1 Z so that, in particular, \Zad\2 > 0 and Zad defines a circle. Note
that this circle becomes a great circle in the spherical geometry defined by Z as the centre
of S2 since it lies in the plane of the circle Zad. Consequently, inversion /iad in the circle
Zad commutes with the antipodal map /x.

Clearly, since Z || a + b + c + J,

Zad -L ß — d, b — c, ci -\- b -\- c + d

so that fiad fixes the angle bisectors a — d and b — c as well as Z; consequently, using
Lemma 4.3, we conclude that

Zad II ^(a-b-c + d)

and [iad exchanges the circles given by a + d and b + c, which span a hyperbolic sphere

pencil that contains Zad. Thus

dad
(ia,b,c,d) i-> id', c', b', <Z)

(A,5,C, D) i-> (Df, Cf, Bf, Af)

showing that /xfl^ /xpaj is one of the remaining symmetries.

Fig. 13 As a — d, b — c L a + d, b + c

span{a — d, b — c} and span{a + d, b + c}
define orthogonal elliptic and hyperbolic circle
pencils.

Fig. 14 The inversion iiac[ in the circle Zac[ fixes the
circles a — d,b — c A. Zad and exchanges
the circles a + d and b + c of the hyperbolic
pencil that Zad belongs to; hence

ßad : (A, B, C, D) (D', C', 5', Ar).

Considering oo — D as the point at infinity, with the circum-radius R < 0 as before,
Zad becomes a circle centred at A' fiad(D) and radius rad given up to sign by

rad
\ZadV

(oo, Zad)2
-4RrA,

where > 0 is the ex-radius of the triangle as obtained from Lemma 3.3.

Note how similar this analysis is to that of the previous section. In fact, changing our mind
about the orientations of the side a of the triangle and of its circum-circle J, we would
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have arrived at (Dr, C', B', A') as the dual of the original quadrangle, hence at the centre
Zad instead of Z of the last section: four of the six angle bisectors would have changed to
the complementary ones and the ex-circle ja would have taken the role of the m-circle; as

a consequence, the inversion \iad would have taken the role of the antipodal map /x.

By symmetry we thus obtain three inversions, /xfl&, \jlüc and [iad, m circles

A+B-C-D ^ A-B+C-D ^ A-B-C+DZab ^ ' Zac ^ ' Zad ^

These circles intersect orthogonally, Zab _L Zac etc., so that the above inversions commute
and satisfy

T ßabßacßad

Hence we have obtained seven commuting Möbius involutions, /x, ßxy and pxy, as symmetries

of our configuration of dual quadrangles. These give rise to an eight element abelian

symmetry group of the configuration:

Theorem 6.1. The %-point configuration ofa quadrangle consisting of

• a Euclidean triangle (A, B, C) and the point at infinity, D oo, and

• the in- and ex-centres of the triangle, D' and Af, Br, Cf, respectively,

has an 8-element symmetry group whose non-trivial elements are the Möbius involutions

/x: the antipodal map, exchanging the two quadrangles,

(A, B, C, D) (A',B'X',D'),

ßxy: inversion in a circle centred at an ex-centre and mapping the corresponding point to
the in-centre;

Pxy: hyperbolic rotation, by tt, of the two ideal tetrahedra with ideal vertices

(A, B, C, D) and (A', B', C', £>'),

simultaneously interchanging the ideal vertices ofeach tetraheron in pairs.

This group exhausts the Möbius geometric symmetries of the configuration unless the

cross ratio q [A, B, C, D] satisfies one of the equations

\q\2=l, \q - 1\2 1 or q + q 1,

m which case the triangle is isosceles, or q satisfies all these equations, m which case
the triangle is equilateral and the configuration has a full octahedral symmetry group of
Möbius transformations.

Finally observe that, by considering the three tetrahedra with vertices (A, B, C, D), (Ar,
B', C', D') and (Zad, Zac, Zab, Z) m projective 3-space MP3, we obtain a desmic system,
see [3, §1]: the tetrahedra (A, B, C, D) and (Ar, B', C', D') are m fourfold perspective via
ßxy and /x, with centres of perspective Zxy and Z.
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