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I Elemente der Mathematik

Two statistical coverage problems in estimating
the variance of a population

WiebeR Pestman

Wiehe R Pestman obtained his doctor s degree m mathematics at the University of
Groningen Currently he works as a visiting professor at the mathematics department
of the Federal University of Santa Catarma (Brasil) His interests are m functional
analysis harmonic analysis probability and statistics

1 Formulating the problems and setting the notation

Suppose a researcher draws a sample X\, X2, Xm from some population, and
computes the corresponding variance m it This m order to estimate the variance of the
population from which the sample was drawn Assume that the population m question has

a Gaußian probability distribution A second researcher draws, independently, a sample
Y\, Y2, Yn from the same population He computes not only the corresponding
variance m the sample, but also surrounds it by margins such as to get a 95% confidence
interval for the population variance Then what is the probability that this 95% confidence
interval, generated by Y\, Y2, Yn, will cover the sample variance of X\, X2, Xm 7

Below this probability will be denoted by P As a second coverage problem, what is the

probability that the 95% confidence interval generated by the X\, X2, Xm and that by
the Y\,Y2, ,Yn are disjoint7 Below this probability will be denoted by Q The aim

Zieht man zwei unabhängige Stichproben aus einer Grundgesamtheit mit Varianz a2,
so kann man sich fragen, mit welcher Wahrscheinlichkeit das aus der zweiten Stichprobe

gewonnene Vertrauensmtervall fur o2 den Wert der empirischen Varianz der ersten

Stichprobe enthalt In ähnlicher Weise lasst sich fragen, wie gross die Wahrscheinlichkeit

ist, dass die Vertrauensmtervalle der beiden Stichproben fur die Varianz disjunkt
sind In der vorliegenden Arbeit werden diese Fragen beantwortet fur den Fall einer
normalverteilten Grundgesamtheit Insbesondere umfasst die Antwort jeden
Stichprobenumfang und die entsprechende Asymptotik Die Resultate werden angewandt auf
statistische Tests, bei welchen die Überlappung der Vertrauensmtervalle als Entscheidung

skriterium dient
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of this paper is to get expressions for the values that can be taken on by P and Q and

to get insight m their asymptotic behaviour Of course one could also think about similar

coverage problems when estimating the mean of a population rather than its variance This
has been studied m some detail m [9] In the following, as a kind of a surprise, it will
turn out that, asymptotically, the coverage probabilities and Q are the same as their
counterparts when estimating the mean

2 Estimating the variance of a population
Let Xi, X2, Xm be a sample from a population with variance a2 This variance a2 is
then usually estimated through the so-called sample variance S2, which is defined as

r2 (Xi - X)2 + (X2 -X)2+ + (Xm - X)2

m — 1

In the above the expression X stands for the sample mean, that is to say

_ Xi + X2 + + Xm

m

When sampling from a Gaußian population the random variables X and S2 are statistically

independent (see for example [7], [8]) By exploiting this result it can be proved that
im — l)S2/cr2 has a so-called x 2-distribution with m — I degrees of freedom Generally a

X2-distribution with n degrees of freedom is defined as being the probability distribution
of a random variable of type

z2 + z2+ + z2

where the Zi, Z2, Zn are independent random variables having a Gaußian distribution

with mean 0 and variance 1 The fact that (m — 1 )S2/cr2 has a x2-distribution with
m — 1 degrees of freedom may be exploited to construct interval estimates at a prescribed

coverage y To be more explicit m this, denote the quantile function of a x2-distribution
with m degrees of freedom by qm Then, when using intervals with endpomts

(m — 1) S2 (m — 1) S2

FI 7 and FI 7
Qm—l [2 + y)J 4m-1 [2 - y)J

the probability that they will cover the variance a2 of the population is precisely y Note
that the number y is m this context often referred to as the confidence level of the interval
estimate See for example [7] or [16] for more details m all this

When drawing two samples X\, X2, Xm and Y\,Y2, ,Yn one may compute their
variances S\ and Sy and compare them by computing their quotient S\/Sy If the samples

are drawn from the same Gaußian population then this quotient S\ /Sy has a so-called
F-distribution with m — 1 and n — 1 degrees of freedom m the numerator and denominator
respectively Generally an F-distribution with m and n degrees of freedom m the numerator

and denominator is defined as being the probability distribution of a random variable
of type

U/m
V/n
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where U and V are independent variables having a x2-distribution with m and n degrees
of freedom respectively In the following such an F-distribution will be briefly referred
to as an -distribution Its cumulative distribution function will be denoted as F The
families of F-distributions and x2-distributions play an important role m mathematical
statistics (see for example [7]) In the following sections they will also play the central

part m capturing the coverage probabilities P and Q m explicit expressions
As a last notational convention, m the sections that follow the Greek capital will stand

for the cumulative distribution function of a standard Gaußian distribution, that is to say, a

Gaußian distribution with mean 0 and variance 1 The quantile function of this distribution,
that is the inverse of <F, will be denoted by q

3 A solution to the first coverage problem
Let X\,X2, Xm and Y\,Y2, ,Yn be independent samples from the same Gaußian

population As m the previous section, denote their corresponding sample variances by
S\ and Sy respectively Then the endpomts of a confidence interval with coverage y,
generated by the sample Y\,Y2, ,Yn, are

(n-i)Sj (n-l)Sjand — -—- (1)
qn-l[\(\ + Y)\ - y)\

This interval will fail to cover the sample variance S\ if either

c2 ^ (n-l)Sj
or

(n-l)S2
^ ^qn-l[\(\ + Y)\ qn-l[\(X - y)]

These two events exclude each other Exploiting the fact that S^/Sf has an F"'^1 -distnbu-
tion, it is straightforward to derive that the probability that the interval given by (1) does

not cover S\ is given by

1 - p-(y) "/ + 1 - C-7 n"' VI)
+ y)\ J \qn-i[^(\ - y)\ J

It follows that

Table 1 below shows the probabilities P for a couple of values for m and n ma scenario
where the coverage y is set to 0 95 The probabilities are presented as percentages

As to the asymptotics of the P (y), one has

lim P!!l(y y for all n and lim P(y) 0 for all m
m—>oo n—>oo

These limits allow for easy intuitive explanations The value of the left limit may be
perceived as follows With increasing m the S\ converge (strongly) to o\ So the probability
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m —> 3 5 10 20 50 100 500 00

n 3 76 2 85 2 90 7 93 1 94 3 94 7 94 9 95

n 5 68 1 79 6 87 8 91 7 93 8 94 4 94 9 95

n 10 55 5 69 3 81 6 88 4 92 5 93 8 94 8 95

0(NII 42 4 56 6 72 0 82 6 90 0 92 6 94 5 95

II L/\ O 28 1 39 5 55 1 69 4 83 1 88 9 93 8 95

II OO 20 1 29 0 42 2 56 4 73 8 83 3 92 6 95

n — 500 90 13 3 20 2 29 0 44 1 57 4 83 4 95

n 00 0 0 0 0 0 0 0 *
Table 1

that the confidence interval, at coverage y, generated by the Y\, Y2, ,Yn, will cover S\
may be expected to converge to the probability that it will cover o\ The latter probability,

however, is y by construction As to the limit on the right, note that with increasing
n the confidence intervals generated by the Y\,Y2, ,Yn shrink to the singleton {Oy}
So the probability that these intervals will cover S\ may be expected to converge to the

probability that the singleton {Oy} will cover S\ The latter is precisely the probability that

— Oy, which is 0 because S\ has a continuous distribution

Besides these two limits there is a limit of the P when walking along the diagonal of the
table given above To be more precise, it will turn out that the limit

lim P2(y)
n —00

exits and that it is equal to the limit of the Pn m [9], where corresponding coverage problems

were studied m the estimation of a population mean In §6 this result will be proved
through analytic derivation

4 A solution to the second coverage problem
In this section, for reasons that will become apparent m the last section, the second

coverage problem will be solved m a slightly more general setting than proposed earlier
Namely, it will be assumed that the samples X\, X2, Xm and Y\, Y2, ,Yn are drawn
from Gaußian populations with variances <x| and Oy respectively By assuming this the

endpomts of the confidence interval for the population variance generated by the Y\, Y2,

Yn are
(n - 1) Sj (n - 1) Sj

qn-l[J>(l + Y)\ qn-1 [5(1 - Y)\

Similarly, the endpomts of the interval generated by the X\, X2, Xm are

(m - 1) S2X (m — 1) S\
Fl T and Fl T

+ Y)\ ~ Y)\
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The two intervals are disjoint if either

(m - 1) S2X (n - 1) Sf

+ y)}
or

(n - 1) Sj (m — 1) S\

<]n-i [j(i — y)\ + y)\

It follows that, denoting the quotient (ry/^x by p, the probability Q',"P (y. p) is given by

1 m qn[\(\ - y)} \nt - Fm (n2 11 ^"IT1 ^]\
1 pne„+, (k.c) - r„ y,--^—^ + Fm

KP2 n 1 + y)\/
(3)

Table 2 below shows the probabilities Q for a couple of values for m and n ma scenario
where the coverage y is set to 0 95 and the ratio p equal to 1 As m the previous section,
the probabilities are presented as percentages

111 3 5 10 20 50 100 500 00

n 3 1 363 1 282 1 456 1 776 2 331 2 803 3 783 5

n — 5 1 282 1 012 1 015 1 252 1 765 2 251 3 386 5

n — 10 1 456 1 015 0 768 0 811 1 154 1 576 2 800 5

0<NII£ 1 776 1 252 0 811 0 657 0 774 1 056 2 186 5

S II O 2 331 1 765 1 154 0 774 0 596 0 664 1 427 5

s II 00 2 803 2 251 1 576 1 056 0 664 0 577 0 980 5

n 500 3 783 3 386 2 800 2 186 1 427 0 980 0 561 5

n 00 5 5 5 5 5 5 5 *
Table 2

For the Q, when p is set to 1, one has

lim Q(y, 1) 1 — y for all n and lim Q(y, 1) 1 — y for all m
tn^OQ n —00

The two limits above allow for an easy intuitive explanation Namely, with increasing m
the confidence intervals generated by the sample X\, X2, Xm shrink to the singleton
{a|} The probability that a confidence interval at coverage y, generated by a sample
Y\,Y2, T«, will be disjoint from this singleton is the complement of the probability
that the interval will cover the number o\ Thus one arrives at the value 1 — y for the two
limits above

Besides these two intuitively clear limits it will turn out that there is a limit of the Q
along the diagonal of the table given above More precisely, the limit

lim Qnn{y, 1)
n^oo

exists and is equal to the limit of the Qn m [9], where the same coverage problem was
dealt with when estimating the mean of a population This result will be proved m §7
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5 Some preparatory asymptotics

In order to study the behaviour of the probabilities and Q for large n one needs to
know something about the asymptotic behaviour of the distribution functions and that
of the quantile functions qn The theorems m this section will prove to be useful m this
In the derivations a special convergence feature of cumulative distribution functions will
be exploited several times If, namely, a sequence F\, F2, F$, of cumulative distributions

converges pomtwise to a continuous distribution function F then the convergence is
automatically uniform See for example [7] for a proof of this phenomenon

The asymptotics needed will be derived by starting from so-called infinite samples

Xi,X2,X3,

from a population with a standard Gaußian probability distribution This is to say that the

X\, X2, X3, form a statistically independent system and that they all have a standard
Gaußian probability distribution Note that for such Xl the expectation value and variance
of X^ is 1 and 2 respectively (see for example [7]) It follows from this that for all n
1, 2, 3, the sums Zn, defined as

have an expectation value equal to 0 and a variance equal to 1 In the following the cumulative

distribution function of Zn will be denoted by and its quantile function by qn
Recall that the cumulative distribution function of the standard Gaußian distribution was
convened to be denoted by O and its quantile function by q In these notations one has

Lemma 1. The <&n converge on R uniformly to O and the qn on the interval (0, 1) point-
wise to q

Proof By the central limit theorem (see [2], [7]) the $>n converge on R pomtwise to O
The latter distribution function being continuous, this convergence is uniform Exploiting
the uniform convergence, together with the fact that O has a positive derivative that is

locally bounded away from zero, one derives that the qn converge pomtwise to q The

necessary mathematical tools m this can be found for example m [ 11]

The following theorem describes an asymptotic feature of F-distributions by connecting
them to a standard Gaußian distribution

Theorem 2. For all v e R one has

x\ + X\ + + X2n - n

s/2n

The convergence is uniform m v

Proof Fet
Xi,X2,X3, and Ti,T2,T3,
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be two independent infinite samples from a standard Gaußian distribution Define the
random variables Zn(X) and Zn(Y) as

X2 + X2 + +x2n-n
Zn(X) -4 2-

V2n

and
Y? + Y2 + + Y2 - n

Zn(Y) 2

\/2n
Now the Zn(X) and Zn(Y) are identically distributed, they both have <&n as their cumulative

distribution function Denote their probability density by cpn Then, m these notations,
applying the law of total probability (see for example [7]), one has

Xi
Pr

'x2 + x2-
y2 + y2- + Y} -1+V"X

r?,(x4
J-00 \ Y2

X2 + X2 + X2
2 Y2 + Y2

< 1 + Zn(Y) s <pn(s)ds

J—00 \ S

f+°° (X2
=J Pr

j — oo y

xf + X2 + + X2

/— - < \ + Jix\Vn{s)&s
V 2n + n Y /

2 + X2 + + x2n - n

\/2n ^V+S + J-.o) <pn(s) ds

"+00f Pr Zn(X) <x+s + ^/^xs <pn(s) ds
7 —OO

"+°° / rr \
[x + s + J -xs I <p„(s)ds

J-OO V

Now define the functions sn as

£n(x) J (x + S + iß XSJ - <t>n (x + s)

By exploiting the fact that d>n -> O uniformly one derives that

lim sn(x) 0 for all v e R
n—>oo

In terms of the sn one may write

/ /— \ r+OO

1+JJr — s„(x)+ I <t>n(x + s) ipn(s)ds
' J — 00

<p„(s)ds

/—00

/+oo (x - s) <pn(-s)ds
-OO

(4)
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The last integral on the right side is the convolution product of the function <Y>n and the
function s i-> cpn(-s), the latter being the probability density of the random variable
— Zn(Y) Thus, regarding it as a function of v, the integral presents the cumulative
distribution function of a random variable of type

Zn(X)-Zn(Y)

See for example one of the references [2], [4], [7], [14] for the underlying theory m this
Both the Zn(X) and the Zn(Y) converge m distribution to a standard Gaußian distribution
The sequences being independent, it follows that the sequence Zn(X) — Zn(Y) converges
to a Gaußian distribution with mean 0 and variance 2 Now, when taking the limit m (4)
and replacing xby x/\/2, one arrives at the conclusion that

^'(i+£>=*(§)
The limit function being continuous, the convergence above is uniform mx

The combination of the previous theorem with the theorem below will make the derivations
m the next two sections straightforward The theorem below describes the asymptotic
behaviour of the quantile functions qn, belonging to the family of x2-distnbutions, m terms
of the quantile function q of the standard Gaußian distribution

Theorem 3. There exists a sequence of functions sn (0, 1) -> R, converging pomtwise
to 0, such that

qn(ri)

n
— 1 + [q(q) + £n(q)\

for all n 1,2,3 and for all 0 < q < 1 Similarly there exists a sequence of functions
8n (0, 1) —^ R, converging pomtwise to 0, such that

n
1 - \Jlb(l) + 8„(r])\

qn(ri)

for all n 1,2,3 and for all 0 < q < 1

Proof Let
Xi,X2,X3,

be an infinite sample from a standard Gaußian distribution and let the associated Zn and

qn be as defined before Define the functions sn as

£n(ri) Gniv) - q(q)

Then, by Lemma 1, the sn will converge pomtwise to 0 Expressing the qn m terms of the

qn, the £n(q) may be written as

qn(q) — n
en(rj) — q(rj)

V2n
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This may be rewritten as

qn(r>)
1 + V§ q(n) + Jl £n(tl)

n

from which the first statement m the theorem follows
The second statement can be derived from the first by defining the functions 8n by

qn(ii)

Then the Sn are algebraically related to the sn as

~ fifi + sn(ri)]

Sn(ri) - yfi q(ri)[q(ri) + sn(r/)]
Sniq) —

1 + ^[q(q) + Sn(q)]

For fixed r] the right side converges to 0 if n -> oo, thus completing the proof of the
theorem

6 The asymptotic behaviour of the probabilities P„
Exploiting the asymptotics m the previous section it is easy to describe the asymptotic
behaviour of the probabilities

Theorem 4. For all 0 < y < 1 one has

hm P%(y) 1 - 2 d>
oo \ V2 /

Proof By (2) m §3 the probability P„+l (y) may be expressed as

c+;M=F;(^))"F"fe) <5)

where
1 — y 1 + y

qi and »72 —

By Theorem 3 there exists a sequence of functions 8n (0, 1) -> R, converging pomtwise
to 0, such that

5^ '-/§ [«<">+«»>]

Using this, one derives through Theorem 2 that
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Observing that

the theorem follows

So, as was already announced at the end of §3, the Pf(y) are asymptotically the same as

their counterparts Pn m [9], where similar coverage problems were studied m the process
of estimating the mean of a population

7 The asymptotic behaviour of the probabilities Q"
The asymptotics m §5 can also be used to derive m a straightforward way the asymptotic
behaviour of the probabilities ß^(y), where Q^(y) stands for Q^(y, 1)

Theorem 5. For all 0 < y < 1 one has

hm Qnn(y)= 2® (s/2q[yi-y)f)
n—>oo

Proof By (3) m §4 the probability (y) may be expressed as

where
1 — y 1 + y

11 and »72 —

From Theorem 3 it can be derived that there exists a sequence of functions 0n (0, 1) -> R,

converging pomtwise to 0, such that

qn(m) _ 1
— i flhim)-+ on(y)\

qn{m)

By symmetry m the standard Gaußian distribution one has

q(m) -q(m)
Hence one may write

q^)=l + ^n[2^) + eniy)}

Using this and Theorem 2 one derives that

"h-~l ® (v5<?<",>)

In virtue of (6) this proves the statement m theorem

Similar to the situation m the previous section, the Q^iy) are asymptotically the same as

their counterparts Qn m [9] where the corresponding coverage problem was studied m the

estimation of the mean of a population
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8 Using interval overlap as a decision criterion
Given an N(/ix, -distributed and an N(/jly cry)-distributed population, the hypothesis

Ho ax Cfy

is sometimes tested m the following way: Two samples X\, X2, Xm and Y\, Y2,

Yn are drawn from both populations and their corresponding 95 % confidence intervals
for the variance are computed. Conclusive m the decision procedure is then whether the
intervals intersect or not. If they intersect, then the hypothesis Ho is maintained and if they
are disjoint, then Ho is rejected. When computing the confidence intervals at a coverage
equal to y, then, by Theorem 5, one arrives m this hypothesis test (for equal sample sizes)
at an asymptotic significance level of

2<&(>/2?[£(l-y)])

where, as before, q stands for the quantile function of a standard Gaußian distribution.
For y — 0 95 this leads to an asymptotic significance level of 0 5574597 % (compare
this to the results m [3], [6], [9], [13]). In order to arrive m this decision procedure at an

asymptotic significance level of of, the coverage y of the two interval estimates must be

adapted such as to have

2<D(V2g[i(l-y)]) =«
Solving this equation towards y leads to

fjfi)
If the coverage y is set m this particular way then the asymptotic significance level of the
decision procedure is equal to a. If the sample sizes are finite or unequal, however, then the

significance levels will deviate from a. For arbitrary sample sizes m and n the significance
level can be computed through (3), thereby taking p 1. From now on, just to illustrate
one thing and another, the asymptotic significance level a will be pmned down to 0 05.
The two interval estimates must have a coverage of 0 8342315 to bring this about. Table 3,

on the next page, shows the significance levels for a few (finite) values for m and n for this
specific value of y.
How does the decision procedure sketched above perform relative to Fisher's 2-sample
variance test, when testing at the sample sizes and significance levels listed m the field of
the table above? It seems natural to compare the two decision procedures then as to their

power. As to this, denote, as before, the quotient ay /ax by p. The hypothesis that is to be
tested can then be formulated as

Ho p l
The power of the method of disjoint intervals is presented by the probability Q(y, P)-
For equal sample sizes, that is for m n, computations suggest that the difference m

power, relative to Fisher's test, is m all cases less than 0 0001. For m ^ n, however, the
difference m power can be considerable. For example, when taking the sample sizes m 5
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III —> 3 5 10 20 50 100 500 00

n 3 6 716 6 639 7 418 8711 10 65 12 00 14 28 16 58

n 5 6 639 5 972 6 151 7 115 8 989 10 50 13 37 16 58

n — 10 7 418 6 151 5 457 5 724 7 104 8 580 12 00 16 58

o<NII£ 8 711 7 115 5 724 5 221 5 773 6 903 10 46 16 58

n — 50 10 65 8 989 7 104 5 773 5 086 5 413 8 273 16 58

s II oo 12 00 10 50 8 580 6 903 5 413 5 043 6 749 16 58

n — 500 14 28 13 37 12 00 10 46 8 273 6 749 5 001 16 58

n oo 16 58 16 58 16 58 16 58 16 58 16 58 16 58 *
Table 3

and n 10, the power of the method of disjoint intervals m p 3 exceeds the power m
Fisher's test by more than 0 04 This particular evaluation shows that, when fixing some
significance level, Fisher's 2-sample variance test does not automatically realize maximum
power Fisher's test is m some cases outperformed by the method of disjoint intervals In
other cases, however, it is the other way round Fisher's test is an example of a maximum
likelihood test It is known that such tests do not automatically maximize power at fixed
significance levels See for example [7] for more details m this As a closing remark, m the
above Fisher's test was carried out m the way it is carried out m the powerful open-source
statistical package R (see [10]) That is to say, the left and right critical regions m the test

are taken to be of equal probabilistic size Otherwise formulated, m Fisher's variance test
the two-sided /^-values are chosen to be twice the right-sided /^-values
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