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I Introduction
In geometry text books, the following theorem is usually known as the theorem of the three

perpendiculars.

Theorem 0 (In 3-dimensional Euclidean space). Assume the point x is outside the plane
II and the line A is included m II; ifxy is orthogonal to II, with y e II \ A, and yz is

orthogonal to A, with z e A, then xz is orthogonal to A.

Die jahrhundertelangen Bemühungen das fünfte Postulat Euklids - das Parallelenaxiom

- zu beweisen, waren, wie wir heute wissen, von vornherein zum Scheitern verurteilt.

Sie führten schliesslich im 19. Jahrhundert zur Entdeckung und Entwicklung der
nichteuklidischen Geometrie. Seither wird nach Gemeinsamkeiten und Unterschieden
zwischen den verschiedenen, durch ihre jeweiligen Axiomensysteme definierten
Geometrien, gesucht. Die Frage nach der Existenz und der Eindeutigkeit von Parallelen

weist auf einen wesentlichen Unterschied der Modelle. Im Gegensatz dazu ist Ortho-

gonalität in der euklidischen, der hyperbolischen und der elliptischen Geometrie
anzutreffen. Der aus der euklidischen Geometrie bekannte Satz über die drei Lote im
dreidimensionalen Raum wird in der vorliegenden Arbeit im Rahmen der sphärischen
und der hyperbolischen Geometrie diskutiert. Dabei warten einige Überraschungen auf
die Leserschaft.
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Fig 1 Equivalence between Theorem 0 and Variant I

In a very short note [1], H.N. Gupta observed (see Figure I) that Theorem 0 is equivalent to

Variant I (In /t-dimensional Euclidean space). Let x, y, z, u be four pairwise distinct
points. If the triangles xyz, xyit. yzu are right at y, y and z respectively, then the triangle
xzu is right at z.

For the completeness of this note, we give a short classical proof of this fact.

Proof. Let v be the symmetric point of u with respect to z. Since uzy and vzy are right at

z and d (u, z) d (u, z), the triangles uzy and vzy are congruent and d (u, y) d (u, y).
Since xy is orthogonal to the 2-space through y, z and u, the triangle xyo is right at y. It
follows that the triangles xyu and xyit are congruent and d (x, v) — d (x, u). Hence the

triangles xzv and xzu are congruent, whence Zxzu 4.xzu. Moreover, Zxzv + fxzu

n, whence Zxzv Zxzu — nil.

H.N. Gupta noted that Variant I does not emphasize any plane n or line A, and so implies
that Theorem 0 holds for spaces of any dimensions. He noticed that the proof of Variant
I holds as well for hyperbolic spaces, but he mentioned nothing about the spherical case.

Instead, he focused on the fact that the triangles mentioned in Variant I can be exchanged:
whenever three of the four mentioned triangles are right, the fourth one is also right. This
last statement does not hold for spheres: see Remark 3.

In order to state Theorem 0 in other spaces, one has to replace Euclidean lines with
geodesies and Euclidean planes with totally geodesic surfaces. Consequently, in the statement

of Variant I, Euclidean triangles have to be replaced with geodesic triangles.

It is straightforward to see that the above proof of Variant I also remains valid m H3 and
§3. In this note we give two new proofs for Theorem 0 following two distinct and more
descriptive approaches; it is just a pretext to play with standard models of the sphere, the



On the theorem ot the three perpendiculars 73

hyperbolic space and their subspaces. We are convinced that other methods of proof can
be imagined, for example by the use of isometries We believe that Theorem 0 remains
valid in other spaces; it may be interesting to find them.

2 Preliminaries

Throughout this section and the next one, Q will denote an Euclidean space, a sphere, or
a hyperbolic space, of arbitrary dimension n In the last section, Q will be a space a little
more general.

By definition, a p-space in Q is a p-dimensional totally geodesic complete submanifold. A
geodesic is always supposed to be maximal, or, in other words, to be a 1-space. A geodesic
through a and v is denoted by xy.
With these definitions, we can give the following statement, more general than Variant I.

Variant II (In R", H" and §"). Assume the point x is outside the p-space 11 and the q-
space A is included in II (n > p > q > 0) Ifx v is orthogonal to II, with v 6 n \ A, and

xz is oithogonal to A, with z £ A, then xz is also orthogonal to A.

Proof. Notice first that the proof of Variant I holds in Q A geodesic xz is orthogonal to a

p-space A 3 z if and only if all triangles xzu, u e A, are right at z This fact and Variant I

yield the conclusion.

For the next proofs, we need explicit models. For hyperbolic spaces, there exist several

standard models, we chose the one which is formally similar to the standard model ot
spheres.

If Q is a sphere ot dimension «, then it is assumed to be the unit sphere in the space R"+1
endowed with the canonical inner product

Similarly, if Q is the n-dimensional hyperbolic space, it is assumed to be embedded in
R1 " as

{(r0, • •, *11) e R'-"| (a, a) 1, AO > o}.

Recall thatR1-" is the linear space R"+1 endowed with the pseudo-Euclidean inner product

(a, y) aovo - x\y\ x„y„,

where a, denotes the ith coordinate of a, the index i starting from 0.

For the uniformity of the presentation, the same bracket notation stands for the two distinct
inner products, according to the case.

For any subset P of Q, Sp(P) stands for the linear subset of R"+l spanned by P; in
particular, Sp (Q) R"+1.

The formula expressing the distance between two points a and y of Q is:

d (a, y) arccos (x,y) if Q is a sphere, and

d (a, v) arcosh (a, y) if Q is a hyperbolic space.

Another parallelism is the description of p-spaces: 4> C Ü is a p-space if and only if there

exists a linear subspace F C Sp (Q) such that <t> F (T Q Of course, F Sp (0)
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3 The projection approach
This approach begins with the observation that Theorem 0 is an obvious corollary of its

following variant (choose £=M3,F n,G A)

Variant III. Let (E, (-, •)) be a pseudo-Euclidean vector space Let F be a proper sub-

space ofE, and G a proper subspace of F. Assume that the restrictions of the innerproduct
to F x F and G x G are non-degenerate. Let f and g be the orthogonal projections onto
F and G respectively. Then g g o f
Proof. Let H =f G1- fl F. We have M — F3- © H © G, and if x — xF± + xh + xc, with

xF± e F1, xh e //, xg e G, then / (x) =xn + vc, g (x) xq

In a Euclidean space E, there are two equivalent ways to define the projection / onto the

linear subspace F. The point f (x) is at the same time the only point v e F such that the

line xy is orthogonal to F (i.e., the orthogonal projection), and the unique closest point to

x among the points of F (i.e., the metrical projection). Metrical and orthogonal projections
can both be defined in any Riemannian manifold (even in more general spaces), onto any
closed submanifold. It is well known that a metrical projection is always an orthogonal
projection; this follows from the first variation formula. It is also clear that any point admits
at least one metrical projection. In the (pseudo-) Euclidean case, the two notions coincide,
so we will simply call those maps (pseudo-)Euchdean projections.
In the case of hyperbolic spaces, any point has at most one orthogonal projection on any
p-space. This is an obvious consequence of the fact that the sum of the angles of any
triangle is less than k Therefore, the metrical and orthogonal projections coincide and are

single-valued, as in the Euclidean case.

In the case of spherical spaces, however, the situation is slightly more complicated.

Lemma 1. Let <t> be a p-space of Fl ~ §" (0 < p < n) and x e Q \ <t>. Then yeOu an
orthogonal projection ofx onto <b ifand only ifeither y or — y is a metrical projection of
x onto <5

Proof. Assume y G <5. The point y is an orthogonal projection of x if and only if
Sp (xy) My © U, Sp (<L) My © V, with y 1 U, y _L V and U -L V. This proves that

y is an orthogonal projection if and only if — v is so. Assume now that v is an orthogonal
projection of x, and that d (x, y) < n/2 (interchange y and —y if necessary). Let z be

a metncal projection of x. Put a d (x, y), b d (x, z) and c cl (y, z), and notice
that, by the choice of y, cos a and cos b are non-negative. The spherical triangle xyz is

right at y, therefore cos b cos a cost < cos a. On the other hand, since z is a metncal

projection, cos b > cos a, whence a b and y is also a metrical projection.

Lemma 2. Let <t> be a p-space ofFl — S" (0 < p < n) andx e Fl.

1. If x G Sp (<t>)^ then any y e <J> is a metrical projection ofx onto O

2. If x £ Sp (i»)-1 then x has a unique metrical projection <p(x). The map <f> : Fl \
Sp —>• $ satisfies cp s o f, where f : Sp (Q) —» Sp(<t>) is the Euclidean

projection and s Sp (fl) \ (0) —> Fl is the radial projection
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Sp(4>)J

4>(x)
Sp(<t>)

Fig 2 Metrical projection on spheres

Proof. 1. This is clear from the fact that d (x,y) — n/2 for any y e <f>.

2. Let z be an arbitrary point in ®; we have

cosd (x, z) {x, z) (f (x), z) — ||/ (x)]| cosd (z,s o / (x)),

whence the unique global minimum of d (x, •) |<j> is s o f (x) (see Figure 2).

Remark 3. Lei <t> be the 2-sphere through y, z, and u. Ifx e Sp («b)1" then the triangles

xyz, xzu, and xyu are right at y, z and u, but yztt is not right m general, see Figure 3.

Therefore, as stated in the introduction, the triangles mentioned m Variant I cannot be

exchanged m the case ofspheres.

A result similar to the second part of Lemma 2 holds in the hyperbolic case (see Figure 4)

Lemma 4. Let <b be a p-space of £2 ~ H" (0 < p < n). Any x e £2 admits a unique
metrical projection ((> (x) onto <b Moreover, the map </>:£,2 —> tj> satisfies <f> — s of, where

j • Sp (£2) — Sp (®) is the pseudo-Euclidean projection, and s : {x e Sp (£2) | (x, x) >
0, xo > Oj —> £2 is the radial projection.

Proof. The proof is similar to the proof of Lemma 2, with hyperbolic cosines instead of
cosines. The only difficulty is to prove that

D =f {a 6 Sp (£2) | (x, x) > 0, x0 > Oj

is stable under /; i.e., f (D) C D. First notice that the proof reduces to the three-dimensional

case. We can assume without loss of generality that Sp (®) has equation xq axi
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Sp(d>)

Fig. 3 The triangles mentioned in Variant 1 cannot be exchanged in the case

of spheres. Note that <S is actually a 2-dimentional sphere, where the

points u, y, z form an arbitrary triangle.

(a > 1). By straightforward computation, the matrix of / in the canonical basis is

1

a2 -a 0

a -1 0
° 1 I 0 0 er - I

It follows that

(/ (*), / (X)) 2

| >

+ (x, x),
aL — 1
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whence (f (x), f (x)) > 0 whenever (x, x) > 0. Moreover, x G D implies cixq — ai > 0,
and consequently the first coordinate of / (a) is positive.

By Lemmas 1 and 2, the spherical and hyperbolic variants of Theorem 0 are a

consequence of

Variant IV. Let <t> be a p-space of £2 ~ H" or £2 ~ §" and F be a q-space included in
<I> (0 < q < p < n). Let <f> : D,p —> <I> and y : l)y —> T be the metrical projections onto
their respective images, where Dj, £2 \ Sp (cD)1 and Dy — £2 \ Sp (T)3- if £2 ~ §" and

Dj, Dy £2 otherwise. Then y y o <fi.

Proof. Define .s : {x G Sp(£2) | {x,x) >0} —»• Q by s (a) x/y/(x,x). By Lemmas 2

and 4, cf> s o / and y s o g, where / and g are the pseudo-Euclidean projections
onto Sp (<t>) and Sp (r) respectively. From the definition of s and the linearity of g, we get

sogos sog. From this fact and Variant III we get

yo(p sogosof — sogof=sog y.

4 The constant angle approach
This section is devoted to our second method of proof. This method has a local character
and therefore yields a more general statement.

A space form is a complete Riemannian manifold which is locally isometric to R", H", or
§". There exist many such spaces; simple examples are the standard projective space and
flat ton.

Lemma 5. Let 'I> and A be two distinct 2-spaces in a three-dimensional space form LI.

def _l. y Q) n A is a geodesic.

ii. The angle between 0 and A is constant along y.

Proof. The statements are local; therefore it is sufficient to prove them for R3, HI3, or §3.

The Euclidean case is clear, so we can assume 12 ~ §3 or 12 ~ H3.

l. Put D Sp (A) and F Sp (<J>). Then y 12 fl D D F is a e/-space, with d
dim (D fl F) — 1. Since and A are 2-spaces, dim (D) dim (F) 3. By hypothesis
we have D / F, whence D + F — Sp (£2). Now

dim (flnf) dim (D) + dim (F) — dim (D + F) — 2.

ii. Let ; be a point of y. Let u, u e Sp (£2) be unit normal vectors to Sp (D) and Sp (F)
respectively. Note that, in the case £2 ~ H3, D and F cannot be tangent to the isotropic
cone, so Sp(D) u1- and Sp(E) vx. Let np (z) (resp. up (z)) be a vector of T:L2

normal to Tz A (resp. T;<F). Obviously, TzLl z1 and

TZA D fl TzLl i/1 fl?1 (Rm + R^)-1".

Flence up (z) G (Rm + Rz) Fl zx Mm.

It follows that A. (R/ip (z), Rnf (z)) — A (Rm, Ru) does not depend on z e y
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If the constant angle between two 2-spaces of a 3-dimensional space form is 7t/2, then the

two spaces are said to be orthogonal.

Proofof Theorem 0 for space forms. Denote by Q a 3-dimensional space form, and let T
be the 2-space containing x, y and z. Let u e TZQ. be a vector normal to F. Since T D

xy _L II, T and Ft are orthogonal, whence TzA (Tz (yz)-1 Fl Tzn), (71 (yz)"1 fl 7in) J_

{Tz (yz)X n rzr), and (rz (yz)-1 n rzr) (Tz (yz) -I-Rm)-1-. Hence TzA Rm, i.e.,
Tz A _L Tzr D Tz (xy).
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