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Echoing L.R. Ford's opening words1 of his delightful Monthly article [5], perhaps we, too,
owe an apology to the reader for asking a seemingly flippant question in the title of this

paper, whose answer must so obviously be 'no'. After all, the adjective "fundamental" says
it all - even if, as Bressoud points out, that designation did not come into use until relatively

'"Perhaps the author owes an apology to the reader tor asking him to lend his attention to so elementary a

subject, for the fractions to be discussed in this paper are, for the most part, the halves, quarters, and thirds of
arithmetic M

Was ist das genaue (logische) Verhältnis zwischen der Vollständigkeit der rellen Zahlen
und den Standardsätzen der reellen Analysis? Spuren dieser Frage finden sich bereits
in Bolzanos Beweis des Zwischenwertsatzes. Bolzano versteht den Zwischenwertsatz
als "Lehrsatz oder Folgewahrheit", der somit von "Grundsätzen oder Grundwahrheiten"

(d.h. von Axiomen) abzuleiten sei, und er wäre deshalb vielleicht überrascht,

wenn er erführe, dass der Zwischenwertsatz tatsächlich eine "Grundwahrheit" ist: Er
ist nämlich zur Vollständigkeit der reellen Zahlen äquivalent! Bolzano verfügte freilich
noch über keine präzise Definition der Vollständigkeit, weshalb sein Argument nicht

ganz unseren heutigen Beweisstandards genügt. Über Bolzanos Ansichten zu spekulieren

mag müssig sein; die folgende Frage ergibt sich aber in ganz natürlicher Weise:

Welche anderen Sätze der reellen Analysis haben dieselbe Eigenschaft, sind also

ebenfalls äquivalent zur Vollständigkeit? Gehört der Hauptsatz der Differenzial- und

Integralrechnung dazu?
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recently [ 1 ]. We admit that we chose the title for effect, accepting the possibility of leading
the reader astray; a more descriptive title would have been: "would the real numbers be

complete without the Fundamental Theorem of Calculus?" In some sense, however, the
title is actually accurate in that this paper will show that a mathematical "world" (which
we interpret to mean "totally ordered field") without the Fundamental Theorem of Calculus
would necessarily be lacking of many of the most cherished parts of Real Analysis.

Over the last decade or so it has been noticed that many statements / theorems from the
standard canon of (single-variable) Real Analysis not only crucially depend on the

completeness of the real numbers but are in fact equivalent to completeness; see [9, 8, 11]
for various lists of such statements. While this fact may be reasonably well known, or at
least be somewhat expected, for some statements such as the Intermediate, Mean, and
Extreme Value Theorems, it may be more surprising for others, such as the Ratio Test [8],
the Principle of Real Induction [3], or the Weierstraß Approximation Theorem. The most
surprising feature of the list of statements equivalent to completeness, however, may very
well be its sheer size, which, in its most recent version [4], comprises more than 70 items!

Curiously, the most coveted candidate for the list, the Fundamental Theorem of Calculus
(FTC), has been the most "difficult customer" in this enterprise and until recently resisted
inclusion2.

As evidence of the "prickliness" of the FTC, consider the simple function / : Q —> (Q>,

f(x) — 1/(1 + .v2). Although / is a perfectly nice function - it is uniformly continuous,
for example-it is not Riemann-integrable over [0,1], since the value of its integral3 would
have to be arctan(l) 7r/4, which is an irrational number. So what is the domain of the

"area function" F(x) J0* f(t) dt arctan(x) appearing in the FTC? Trying to identify
it would amount to identifying the rational arguments x for which arctan(x) is a rational
number, which would get one into deep water. What is more, it appears to be unknown
whether / even has an anti-derivative; i.e., whether there exists any differentiable function
F : Q —» Q such that F'(x) f(x).
In this note we present two versions of the FTC, each of which turns out to be equivalent
to the completeness of Archimedean fields (ordered subfields of IR). This is accomplished
by separating the two aspects of the problem illustrated above: the first theorem deals with
the mere existence of anti-derivatives, whereas the second one deals with the integrability
of continuous functions and the domain of the area function. Fet F be an arbitrary ordered
subfield of M.

Theorem 1. F is complete ifand only ifevery continuousfunction defined on a closed and
bounded interval has a uniformly differentiable anti-derivative.

Theorem 2. F is complete if and only if every continuous function defined on a closed
and bounded interval is Riemann-integrable (consequently, its (signed) "area function " is

defined on the whole interval).

2Theorem 1 below is stated (as 'CA53') in [4] without proof. The main purpose of the present paper is to

provide (he context and proof of this theorem. It also provides the details of Theorems 2, 3 and 5, which are
stated in |4] (as 'CA32', 'CA52', and 'CA54', respectively) in a "minimalist" encyclopedic style. Theorem 2 is
also mentioned in [9] (#30) and [11J (#16).
2For the dehnition ol the Riemann integral in subfields of the reals, see the last paragraph of Section I.
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The bulk of this paper is devoted to the proof of the direction of Theorem 1, which
is done by contradiction. More specifically, assuming that F is not complete, a continuous

function (called "P-function" for "Propp function" below, as it is a slightly modified
version of a function proposed by J. Propp [7]) is constructed, whose integral is a number

in R \ F; this number would have to be the value of the anti-derivative at x 1,

which is impossible. (In this respect, the P-function is similar to the function / above.)
The assumption of uniform differentiability is used to extend the various functions appearing

in the proof from F to R and to utilize the standard FTC in R. The P-function also

provides the required counterexample for the "<£=" direction of Theorem 2. As an aside,

we note that the strength of Theorem 2 does not change if "continuous" is replaced with
"uniformly continuous", as the P-function is actually uniformly continuous.

In view of Theorems 1 and 2, the FTC has finally yielded and revealed its relationship to

completeness - well, actually, not quite: it is is still keeping one secret, namely whether the

assumption of uniform differentiability in Theorem 1 is really necessary, or if "uniform"
could be dropped "without penalty", i.e., without changing the strength of the theorem.
The function f : Q —» Q defined above is a case in point, as it still might - just might -
have an anti-derivative4.

This note is organized as follows. After briefly fixing some (minimal amount of) nomenclature

and notation (Section 1), we present in Section 2 the construction of the P-function,
which is the main technical device in the proofs of Theorems 1 and 2. In the next section we
discuss the properties of uniformly differentiable functions as needed in the proofs (Theorem

4); this section also contains another statement equivalent to completeness, which also

involves uniform differentiability (Theorem 3). In Section 4 we finally present the proofs
of the main results, which, thanks to the preliminary work of the preceding sections, are

actually pleasantly short. We end the paper with addressing the question that some readers

may already have been wondering about: what about "the other" (part of the) FTC?

1 Preliminaries

We assume that the reader is familiar with the basic definitions and properties of (totally)
ordered fields. In this paper we will only consider Archimedean (ordered) fields, which
are known to be isomorphic to (ordered) subfields of the reals. We may therefore restrict
ourselves to subfields of M; accordingly, F will always denote such a subfield. Examples
of proper subfields of R include simple field extensions of Q, such as Q(s/2), as well as

the algebraic, computable, and constructive numbers. While all these fields are countable,
it can be shown that R also contains proper subfields which are uncountable (see, e.g.,
[2]). Readers who still wonder - or worry - how large (or small) the class of subfields of
R really is may take comfort in the knowledge that there are already uncountably many
pairwise non-isomorphic subfields in the class of countable subfields alone [10].

As mentioned in the introduction, completeness may be defined in many ways; the most
widely-used definition is probably the one requiring the existence of suprema for bounded
sets. Of course, any of the equivalent definitions will do, but for the purposes of this paper,

4In view of Theorem 1. it cannot have a uniformly differentiable one, however. So if an anti-derivative does

exist, it will have to be a "lairly strange" one
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it is sufficient to interpret the completeness of F as F R, since R is obviously complete
and any proper subfield of R is incomplete.

We adopt the convention that intervals [a, b] without subscripts refer to R, whereas we

typically add subscripts when referring to F; i.e., for a, b G F, a < b, we have [a, b]p
[a, b] fl F. Moreover, unless otherwise stated, / always refers to a function f : [a, b]p —>

F, and the function / : [a, b] —> R denotes the (unique) extension of /, provided it exists.

Finally, we need to define the Riemann integral in subfields of the reals. Formally, the

definition is identical to the usual one: functions are integrable if and only if the appropriate
limits of Riemann sums converge in F, where, obviously, the Riemann sums are to be

constructed within F; i.e., partition and sample points are numbers in F. The reader is

cautioned, however, that this definition is different from the ones used in [9] and [11] (the
latter being based on [6], but still using different terminology).

2 Construction of the P-function

Definition 1 ([7]). Let F be incomplete and a in R \ F. We may assume w.l.o.g. that a is

an irrational number in ^|, C R.

We will construct a continuous function Pp from

[0, i]F [o, l] n F

to itself. Let Q.d^dj,... be a base 4 representation of a — |. That is,

3 d\ d2 dj, 3 i d,
« § + 7 + 4- + P + -" 5 + £4-7

J i

with dj G {0, 1,2, 3).

Note however that since a g ^|, |^, we have a — | G ^0, ^ and so d\ must be 0.

Let n G N be arbitrary and consider the square S„ in [0, 1] x [0, 1] with corners (2~", 2~"j
and (2-("+1),2"(»+1)). We define P„ : [2-("+1>, 2""] - [2"("+1\ 2""] algebraically by
requiring it to pass through the two points

Q„ (l'" (l - ^"+28+1),2-("+")

*„ (2-" (l-^),2~")
and the two corners of Sn defined above, and be linear on any open interval not containing
any of these points. The resulting function is obviously continuous on its domain.

We can also describe this geometrically. Clearly, the area of S„ is We divide S„ as

shown in Fig. 1. Note that each parallelogram has area 4-"-2. By selecting a division of
Sn as in Fig. 2, the division will have area d„+24-"-2. We can treat the selected division
as a function Pn from [2-'"+1\ 2~"] to itself shown by the darkened edges in Fig. 2.
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(2 - +'), 2~'" + I')—1——1——1——1—

Flg. 1 S„ divided into equal regions, called parallelogram'.

Fig 2 Selection of regions in Sn using the value of dn+2

Let us now consider the definite integral of the function P„ on its domain. Using the

analytic description of Pn, a short computation yields

f2-"
/ P„(x)dx 04+2 + 1/2)4"("+2) +4"("+1).

J2-(»+1)

Now we define P : [0, 1] —> R by requiring it to be the continuous function passing

through all Qn, R„, (0, 0) and (1, 1), and be linear on any open interval not containing any
of these points. This is simply the piecewise concatenation of all P„s. The function P is

continuous on [0, 1] and so is uniformly continuous there.

Finally, we define Pp : [0, 1]f —» F to be the restriction of P to [0, l]p. Note that Fp is

(well defined and) uniformly continuous.

As an example, suppose a is an irrational number starting 0.4485
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Then a 3/8 + 1/42 + 0/43 + 2/44 + 3/45 + • •

Fig. 3, accurate on [1/16, 1],

and so we get the function shown in

Fig. 3 P-function for a 0.4485

Lemma 1. Let P : [0, 1] —> M be the unrestrictedfunction defined in Definition 1. Then

l() P(x) dx a, where a e R \ F is the value used in the construction of P.

Proof. First, define, for n N,

tn(x) Pif-v e [2-("+", 1]

0 otherwise

and note that tn is integrable with

~t n r2~"

J 0
t„(x)dx V / Pj(x)d

I * i_n

j=o

Now, {t„) converges uniformly to / on [0, 1], and so

Jo

1 fl /•'
P(x)dx= / lim t„(x)dx= lim / tn(.v

Jo 00 n^oojo
n r2~" 00 p2~"

(x)dx

lim ^ / PAx)dx *Syy / P,(x)dx.
ll-KX) ^—1 J2-O1 + 1) J"'1

/'=0' 7=0
./2-("+n
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We computed the definite integral of each Pt above and so

| P(x) dx ^ [d,+2 + ^ 4~(/+2) + 4"0 + l)

7=0 V ' i=0 X '

which is a by definition. So P(x) dx =«as desired.

3 Uniformly differentiable functions
In this section, we explore some of the properties of uniformly differentiable functions.
Theorem 4 below is the main tool in the proof of Theorem 1. In addition, we proudly
present a new entry on the list of statements equivalent to completeness, which also
involves uniform differentiability (Theorem 3).

Definition 2. Let f be a function from [a, b]$ C F to F and let

De r/"](-*") DJ/](c) ^(x,c £ [a, Afp, x c)
x — c

denote the difference quotient of f.
(i) (Differentiability)

/ is differentiable at c e [a, b\<p if there exists a number a e F such that, for every
e e F+, there is some S e F+ such that \ Dc[f](x) — a| < e for every x e [a, b]p
with 0 < \x — c| < ö. If this is the case, we say that a is the derivative of f at c and

write f'(c) a.

(ii) (Uniform Differentiability)
/ is uniformly differentiable on fa, b\Y if there exists a function g : [a, /;% — F
such that for every e e F+, there is a <5 F+ such that |Dv[/](x) — g(y)| < e for

every pair x, y e fa, b]jp with 0 < \x — y\ < ö. In this case, we say that g is the

derivative of f on [a, £>]f and write /' g.

Clearly, a and g are unique and if / is uniformly differentiable, it is differentiable for
every c e [a,f>]p with /'(c) g(c). Moreover, the following standard facts may be

verified using their standard proofs from Real Analysis.

(I) f is differentiable at c with value /'(c) a if and only if there is a function rt :

fa, b]f —>• F, continuous at c with rc (c) 0, such that for all x e [a, /j]p, f(x)
f (c) + a(x - c) + rL (x)(x - c).

(II) Suppose / is differentiable at c. Then / is continuous at c.

(Ill) Suppose / is uniformly differentiable. Then f' is uniformly continuous.

The converse of (III) requires completeness and is in fact equivalent to it:
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Theorem 3. F is complete if and only if every dijferentiable function whose derivative is

uniformly continuous is uniformly differentiable.

Proof. (=>): Since F is complete, we have F R and the Mean Value Theorem holds. Let
e e F+ be given and ö e F+ such that | f'(x) — f'(y)\ < e for all x, y e [a, b] such that

\x — y\ < 8. For arbitrary such x, y (assume w.l.o.g. thatx < y), choose w e [x, y] such

that (f{x) - f(y))/(x - y) f'(w). Then \x - w\ < 8 and so |Dx[f](y) - f'(x)\
\f'(w) — f'(x) | < e, which implies that f is uniformly differentiable, as desired.

(<(=): Assume that F is incomplete and let a eB\F. Then the derivative of the function

/ : F -» F defined by

0, if x < a

1, if x > a
fix)

is identically zero and hence uniformly continuous. However, by choosing sequences
{x^} C F with lim^oox;^ a and x~ < a < xj~, we may show that / cannot be

uniformly differentiable, since \Dx-[f](xf) — f(x~)\ 1 /(jc + — x~) —»• oo, a

contradiction. (Here we used that F is a dense subset of R, which is shown in the proof of
Lemma 2 below.)

Before stating the other main result of this section (Theorem 4), we record a simple but

important fact about uniformly continuous functions.

Lemma 2. Let f be uniformly continuous on [a, frJip. Then f has a unique (uniformly)
continuous extension to [a, b\ C M, where [a, b] PlF [a, b]jr; i.e., there exists a continuous

(hence uniformly continuous) function f : [a, b] —> R such that f (x) f(x) for all
x e [a, ftjjr and f is the only function with these properties. In particular, f is bounded5.

Proof. It is a standard result of Real Analysis that uniformly continuous functions can

(uniquely) be extended to the closure of their domains, so we only need to argue that

[a, b]F is a dense subset of [a, b]. However, this immediately follows from the density of
Q in R and Q C F C R.6

The next theorem shows that uniform differentiability "jibes well" with continuous extension,

which is the main reason for requiring it of anti-derivatives in Theorem 1.

Theorem 4. Let f be uniformly differentiable on [a, b | n-. Then J is uniformly continuous
and its unique (uniformly) continuous extension f : [a, b] —> R is uniformly differentiable
with f'(x) f'(x) for all x e [a, Furthermore, the extension of/' exists (uniquely)
and coincides with f' on [a, b].

The proof of this theorem is somewhat lengthy and therefore relegated to the appendix.
Instead we proceed to the proof of the main results.

-In light of the assumed (uniform) continuity of f, this assertion may seem redundant However, it turns out
that one needs to assume completeness oi F to ensure that every continuous function is bounded Similarly, the

property that every umfonnh continuous (unction is bounded is equivalent to the held being Archimedean
''Note that every ordered field contains a copy of Q
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4 Proof of the main results

Proof of Theorem 1. (=>•): Let F be complete, i.e., F R, and so the standard Fundamental

Theorem of Calculus I holds: if / : [<v, /j)f —> F is an arbitrary continuous function,
it has a continuous antiderivative, say F. Since f is defined on the closed and bounded
interval \a,b], it is uniformly continuous, so the derivative F' — / of F is uniformly
continuous. By Theorem 3, this implies that F is uniformly differentiable on \a, h]p.

(<=): We argue by contradiction. Let F be incomplete and a e R\F. Then, by Definition 1

and Lemma 1, we have a continuous function P : [0, 1] —»• R such that [J P(x) dx a.
Denote its restriction Pp : [0, 1]f —> F to [0, l]p by f.
By assumption, there is a uniformly differentiable function F : [0, l]f — F such that

F'(x) — f(x) for all x e [0, l]p. We may assume w.l.o.g. F(0) 0. Then, by Lemma 4,
F has a unique extension F to [0, 1], which is (uniformly) differentiable and whose derivative

F' is equal to the continuous extension of F' f, i.e., F' — F' f P. So F is

an antiderivative of P in R.

Now F(\) — F( 1) — F{0) F(l) — F(0), since F and F must coincide at 0 and 1. But

F(l) — F(0) /J P(x)dx — a by the standard Fundamental Theorem of Calculus II
applied to P and F, which are functions in R. So F(l) a, which is impossible, since

a £ F.

Proofof Theorem 2. (=>): Standard Real Analysis.

(<=): Assume again that F is incomplete. We claim that the restriction f Fp of the

P-function P cannot be Riemann-integrable. To see this, assume it is, which means that
the limit of right sums, lim„^oo ^ X"=i exists in F; call it a e F. Since /(j/n)
P(j/n) for all n e N, we obtain

a — lim — "V1 /' lim — ^ P (—^ / P(x) dx a e R \ F,
n->oo n \n n->oo n j \n / ,/0

a contradiction since a e F.

5 But wait: what about "the other" FTC?

So far we have not addressed the second (part) of the FTC7, often called the "Evaluation
Theorem" (ET). Is it perhaps also equivalent to completeness? One hint that this may
indeed be the case may be found in the standard proofs of the ET utilizing the Mean Value
Theorem (in form or another), which itself is equivalent to completeness. As the reader
is well aware by now, the name of the game of showing the difficult direction (ET =>

completeness) is to find a counterexample, if F is assumed to be incomplete. Here this

amounts to finding an integrable function /, possessing an anti-derivative F, such that

f f(x)dx F(h) - F(a) (1)
J a

7The numbering ot the parts is somewhat inconsistent, but judging from our sample ol Calculus text books, the

evaluation part is more often designated as "Part II"
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does not hold. A moment's reflection reveals that the functions f 0 and F given by
the function f in the proof of Theorem 3 («=) have precisely the required properties. As a

result, we obtain

Theorem 5. F is complete ifand only if for every Riemann-integrable function f possessing

an anti-derivative F the identity (1) holds.

One final question: having been sensitized to the utility of the assumption of uniform
differentiability, we may be tempted to ask what the effect might be of replacing "anti-
derivative" with "uniformly differentiahle anti-derivative". The answer is given in the next
theorem whose proof is left to the motivated reader. (Hint. Prove that, in any subfield of
the reals, uniformly differentiable functions satisfy an approximate version of the Mean
Value Theorem

Theorem 6. Let f be a Riemann-integrable function with a uniformly differentiable anti-
derivative F Then (1) holds.

Appendix: Proof of Theorem 4

The bulk of the proof is broken up into several lemmas, which we list first.

Lemma 3. Suppose f is uniformly differentiable and f is bounded Then f is uniformly
continuous.

Proof. Let e e F+ be given and e F+ be as in (n) with e/2. Moreover, let ö

min{l, <5i, e/(2M)}, where M is a bound on \f'\. Then, for x, y e [a, such that \x —

y\ < <5,

I fix) - f(y) | | f'(y)(x -y) + (Dv [/](*) - f'(y)) (x - y)\

<ö\f'(y)\+d\Dy(f](x)- f'(y)\
e|f'{y)\ e e e

< +- - + -= 6.~ 2M 2 2 2

This shows the uniform continuity of /.
Lemma 4. Let f be differentiable at c, with f uniformly continuous on [a, b]f. Then the

function rc : [a, b]p —> F defined in (I) above is uniformly continuous

Proof. Let e e F+ be given. Then, since / is differentiable at c, there is ö\ e F+ such

that |Dc[f](x) — /'(c)| < e/2, which gives |rc(x)| < e/2 for all a e with
0 < |a — c\ < Si.

Since f is uniformly continuous on [a, b]f, there is 02 e F+ such that \f(x) — f(y)\ <
e<5]/4 for all x, y e [a, such that 0 < \x — y| <62.

Also, / is bounded on [a, bjp by Lemma 3, so let M 6 F+ be a bound for /, i.e., \f(x)\ <
M for all a e [a, b]r, and let 5-1 d\e/(\6M).
Now choose S — mm{ö\/2, S2, and let a, y e [a, b\$ such that 0 < \x — y\ < <5.
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CASE I: |x — c\ < 8\/2 or \y — c\ < 8\/2.
W.l.o.g., assume the former. Then

and so both \x — c\ and |y — c| are less than 5\. Then by definition,

Mx) ~rc(y)\ < \rc(x)\ + |rc(y)| < e/2 + e/2 < e.

Case II: \x - c\ > 8x/2 and \y - c\ > 8\/2.
Then

Irc(x) - rt(y)| |Dt[f](x) - Dc[f](y)\ fix) ~ f(c) f(y) - /(c)
x — c y-c

< \f(x)-f(y)\
If - c\

fix) - fiy)
y -c

ö\/2 16M (ö\/2)2 2 2

2M 6
So in both cases, \rc(x) — rc(y)| < e for all \x — y| < S, which shows that rc is uniformly

Lemma 5. Let f be differentiable at c e [a, b]p and uniformly continuous on [a,
Then the unique uniformly continuous extension f : [a, b) R off is differentiable at c

Proof. Since f is uniformly continuous, it is bounded by Lemma 2 and hence rc(x) :

[a, IF is uniformly continuous by Lemma 4. Therefore, rc has a unique uniformly
continuous extension, rt :[a,b] —> R. Clearly, rc (0) rc(0) 0.

As a result, the function g : [a,b] — R, defined by g(x) — /(c) + f'{c)(x — c) +
rc(x)(x - c), is uniformly continuous as well. Furthermore, g(x) /(c) + f'(c)(x —

c) + rt(x)(x - c) — /(c) + f'{c)(x - c) + rc(x)(x - c) /(x) for all x e [a, b]p,
so g agrees with f on [a, b]p. By the uniqueness of the continuous extension, we get

f (x) g(x) /(c) + /'(c)(x — c) + rc(x)(x — c), which, in light of (I), means that f
is differentiable at c with /'(c) f'(c).

We are now finally ready for the

Conclusion of the proofof Theorem 4. First, by (III), /' is uniformly continuous and

therefore has a unique uniformly continuous extension /'. Moreover, /' is bounded by
Lemma 2 and hence f is uniformly continuous by Lemma 3, i.e., / : [a, b] —> R exists.

We will show that f is uniformly differentiable on [a, b] and /' /'. To this end, let
e e R+ be given. Since F is dense in R, we can assume w.l.o.g. e e F+.

continuous on [a, b]^.

with f' (c) /'(c).



172 M Deveau and H Teismann

Since } is uniformly differentiate, we can find a ö e F+ such that for all *, y e [a, /?]p

with 0 < |a — _yI <d,|Z?v[/](A)-/'(v)| <e/2
Now let p,q e [a, b] be such that 0 < \p — q\ < d\ w.l.o.g. assume that p < q. Since

Q is dense in R, there are sequences {/;„) and {<y„) drawn from F convergent to p and q,
respectively. We may assume w.l.o.g. that p„, qn e \a, /;|p and 0 < \pn — q„\ < S for all

n e N, which implies \D(jn[f](p„) - /'(/?„)| < e/2.

Then by definition and the continuity of / and /', we have:

\Dt,\f](p) - /'(/?)| lim
n—*OQ V Pn - (In J I

Moreover, f(pn) — f (p„),J(q„) — f (</„), and f'(p„) f'(p„), since p„,q„ e [a, b|F,
and so

lim \DqJ f](p„) - f'(Pn) | 5 - < e.
n—-oo 1 1 2

Since our choice of <5 was independent of p and q, this shows that / is uniformly
differentiate, with f' /', as desired.
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