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1 Introduction
A quite popular tiling problem is that of the classic chessboard with two diagonally
opposite corners removed: can this "truncated chessboard" be covered by dominoes? Every
domino should cover exactly two (vertically or horizontally) adjacent squares. A simple
argument for proving that such a tiling is not possible is by noticing that a domino of any
orientation covers one black square and one white square, whereas the "truncated
chessboard" has<32 squares of one color and 30 of the other color.

For which kind of boards does a tiling by dominoes exist? As in the previous example, the
board should be a union of squares in such a way that we can color them alternately white
and black, and there are exactly as many white squares as black squares. This condition is

necessary, but it is not sufficient (see Figure 1).

'Research supported by CIC-UMSNH

Bekanntlich lässt sich ein 8 x 8 Schachbrett, bei dem zwei diagonal gegenüberliegende
Eckfelder entfernt wurden, nicht lückenlos mit 2x1 Dominosteinen bedecken. Eine

notwendige Bedingung für die Existenz einer solchen Parkettierung bei einem
zusammenhängenden Schachbrett beliebiger Form ist, dass es gleichviele schwarze wie
weisse Felder enthält, denn jeder Dominostein bedeckt ja immer zwei Felder
unterschiedlicher Farbe. Diese Bedingung ist jedoch nicht hinreichend. Thurston hat 1990
ein entsprechendes allgemeines Kriterium angegeben. Die Autoren der vorliegenden
Arbeit zeigen Thurstons Methode in neuem Licht und verallgemeinern sie auf die
reizvollen Gitter in der hyperbolischen Ebene.
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Figure 1: A board that does not admit a tiling by dominoes.

The aim of this article is to give a purely combinatorial proof of a criterion which allows
to decide whether a given domain may be covered by dominoes; this is a criterion given
by Thurston. On the other hand, our proof applies not only to the Euclidean case but also

to the spherical and hyperbolic geometries.

Thurston [7] developed the so-called height functions as a major tool to prove his criterion
in the Euclidean case. Roughly speaking, a polygon admits such a tiling if and only if the

height function over the polygon boundary is a Lipschitz function with Lipschitz constant
K 1 (see inequality (1)). In fact, Thurston was able to find an algorithm to produce a

tiling when it exists, and the algorithm also indicates the nontileability when a tiling does

not exist. Section 2 is devoted to reviewing the concept of height function, Thurston's
results, and their adaptation to spherical and hyperbolic cases.

Thurston's algorithm is explained in Section 3.

Two examples are reviewed in Section 4.

Height functions arose when Thurston regarded certain Cay ley graphs as graphs in M3. Our
combinatorial approach makes it clear that the original algebraic framework using Cayley
graphs is not entirely necessary. This can also be seen in [5], However, for the sake of
completeness, in Section 5 we briefly summarize the connection between height functions
and Cayley graphs of Conway tiling groups in the Euclidean case.

We refer to [1] for the hyperbolic geometry background. In our figures, we shall use the
Poincare disk model KD for the hyperbolic plane [1, Section 2.7]. We expect that a reader
who has not studied hyperbolic geometry ought to be able to go through this note recalling
two facts: hyperbolic lines in D are arcs of Euclidean circles orthogonal to the boundary
3D (including straight lines passing through the origin), and angles between hyperbolic
lines are equal to Euclidean angles between circles.

1.1 The concrete problem

In the Euclidean plane there are solely three regular grids up to similarity: the triangular,
the square and the hexagonal grids (see Figure 2). In that regard, the hyperbolic plane is

much richer than the Euclidean one. Recall the hyperbolic grid {p,q}, where p and q are

positive integers with p, q > 3, to be a tiling of the hyperbolic plane by a hyperbolic
regular p-gon with angle 2n /q (see Figure 3). It is understood that the intersection of two

p-gons is either a complete edge, or a vertex, or the empty set. The hyperbolic regular
p-gon with angle 2n/q exists if and only if (p — 2)(q — 2) > 4, and it is unique up
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to hyperbolic isometries, in which case the hyperbolic grid {p, q] is well defined up to

hyperbolic isometries [1, Chapter 6], We also include ideal /?-gons allowing q oo. When

(p—2)(q—2) 4 we have a Euclidean grid, and with (p—2)(q — 2) < 4 results a spherical
grid, obtained by central projection of a platonic solid over its circumscribed sphere.

In this article we assume that either q is an even integer or q oo, so we can color p-gons
alternately white and black, that is, two adjacent /?-gons (that share an edge) have opposite
colors, like a chessboard.

By {p,q)-domino we mean the union of two adjacent /?-gons in the grid {p,q}\ this is

unique up to hyperbolic isometries for (p — 2)(q — 2) > 4. Hence a {4,4}-domino is the

usual (Euclidean) domino, and a {3, 6}-domino is the so-called lozenge.

Given a grid {/;, q], a grid-path is a differentiable (of class C1) path y : [a, h] — ID which
satisfies two conditions: the image is union of complete edges of the grid, and y'(t) 0 for
some t e [a, b] implies that y (t) is a vertex of the grid. The second condition ensures that
the path runs along the complete edges before stopping, hence it determines an orientation
of the edges while passing through them; although some edges may be traversed more than

once in different directions. Then a grid-path is composed of edge-paths in an obvious way.
A closed grid-path is defined as a grid-path starting and ending at the same vertex of the

grid. We say that a closed grid-path is simple if it has no self-intersections.

A closed subset B of the hyperbolic plane is a {p,q)-board (or simply a board) if its
boundary is a simple closed grid-path on the grid [p, q}.

Thurston's criterion responds to the question: when a {p, q\-boardcan be tiled by {p, q}-
dominoes? (See Figure 4.) Compare [3], where essentially the same question is addressed

with a somewhat different approach.
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The below arguments apply equally to Euclidean, spherical and hyperbolic geometries.
Only the grids {4,4), {3,6} and {6, 3} are Euclidean; {3, 3}, {4, 3}, {3,4}, {5, 3} and (3, 5}

are spherical; and all others are hyperbolic. Since we assumed that q is even, in order to
have bicolored boards, we leave out grids {6, 3}, {3, 3}, {4, 3), {5, 3} and {3, 5). Therefore
the spherical case is not interesting because every board with the same number of white
and black triangles in the octahedral grid can be tiled by dominoes. We invite the reader to
check it.

1.2 Connection with graphs and physics

Tileability of a board by dominoes is a geometric realization of a classical combinatorial

concept; perfect matching of a graph. We turn a board into a graph by replacing the p-
gons by vertices and putting an edge between those vertices which correspond to adjacent

p-gons; the graph G obtained is the dual graph of the board. Then, tiling the board by
dominoes corresponds to selecting edges from G such that every vertex is the endpoint
of exactly one of the chosen edges (see Figure 4). Such selection of edges is known as a

perfect matching.

Another interesting aspect of dominoes has to do with dimers. A dimer is a polymer with
two atoms. One may regard each vertex of G as an atom, and each edge in a perfect
matching as a representation of a diatomic molecule; so a perfect matching is also known
as a dimer covering. Height functions have applications to physics; to name one, they can
be used to sample randomly a dimer covering with the uniform distribution (see [4] for
instance). Perhaps adapting to the hyperbolic geometry can motivate new applications.

Although it is possible to define height functions for dimers on any bipartite graph (see [6]
for example), the generalization stated here is almost straightforward, is not necessary to

develop additional concepts.

1.3 Acknowledgement

We thank the referee for comments and suggestions that really helped to improve the

article. We also thank Scott Vorthmann for providing our personalized license for vZome
4.0. This software was used to create Figures 7, 8 and 9.
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2 Thurston's criterion
Let B be a bicolored {p, gj-board. Let V denote the set of vertices of the grid which lie
at B. We consider two vertices in V to be adjacent only if they are connected by an edge
which is contained in B. We denote by [u, o] an edge-path from u to v, where u and ü are

adjacent vertices. An edge-path is positively oriented if it has a black p-gon on its left.

Definition 1. A heightfunction h on B is a function h : V —* Z which satisfies:

1. if u, u e V are adjacent vertices and the edge [u,v] is positively oriented, then

h(v) h(u) + 1 or h(v) h(u) + 1 — p\
2. if in addition [m, u] is part of the boundary of R, then just h(v) h(u) + 1.

The (central) Figure 5 illustrates a height function.

Figure 5: Left: A bicolored {5,4}-board. Center: The values of a height function H defined

on the board. Right: Edges whose ends have difference 4 are dotted lines, and the other

edges are delineated lines.

Proposition 2. Let B be a bicolored {p, q}-board. If there exists a heightfunction defined
on B. then B can be tiled by {p,q}-dominoes.

Proof. Let h : V —> Z be a height function. Consider an arbitrary p-gon P contained in

B. Let ui, t>2, •••, vp denote the vertices of P, labeled so that u,_i and v, are adjacent and

[u,_l, u,] is positively oriented, for any /.

Notice that li(v,) h(v,~\) + 1 — b,p, where b, e {0, 1}. Then

h(v2) — h(vi) + 1 - bip,
h(ui,) h(v2) + \ - b^p — h(v 1) + 2- (b2+ h)p,

h(vp) h{u 1) + (p - 1) - (b2 -\ Vbp)p h{v\) + p - 1 - np,

where n — b2 + • • + bp is the number of edges such that its ends have difference > 1. It
follows h(v 1) h(vp) + 1 — (1 — n)p, therefore n 0 or n 1. There is, in both cases,

exactly one index k such that h(vk) h(vr-1) + 1 — p, that is h(vi) /t(u;_ 1) + 1 for
any / ^ k.

It is now immediate that we obtain a tiling of B by {p, gj-dominoes by erasing all edges
whose ends have difference > 1 (see Figure 5).
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Let B be a bicolored board. Given two vertices u and v in B, a grid-path from u to v is

called positively oriented if it moves in positive direction through all edge-paths composing

it. We also define the distance between it and v, denoted by d(u, v), to be the minimal
length of all positively oriented grid-paths from u to ü contained in B, where the length of
a grid-path is equal to the number of edges composing it. The distance d is not symmetric,
it behaves as distance to go by car from one place u to another v in a city: the senses of the

streets prevent d(u, v) d(o,u). There is always a positively oriented grid-path from u to

v, for the same reason that we can get from one place to another by car through the streets

of a city: given any path from u to v, we replace each edge-path e traversed in nonpositive
sense by a positively oriented grid-path which turns around a p-gon adjacent to e.

Proposition 3. Let B be a bicolored board and h be a height function defined on B. Then

any pair of vertices u,v on the boundary of B satisfies

h(v) — h(u) < d{u,v). (1)

Later we shall prove a converse result: a function h defined on the boundary vertices which
satisfies inequality (1) and condition 2 in the definition of height function can be extended

to a height function on B. This equivalence is what we call Thurston's criterion.

Proof. Consider the tiling of B given by Proposition 2. The proof is by induction over the

number of dominoes needed to tile B.

Suppose that B is a domino. Let u and o be vertices in the boundary of B such that /z (t>) >
h(u). If u and v belong to the same p-gon, then h(u) — h{u) d(u, u). If u and v lie in
different p-gons, we have d(u', v) < d{u, o), where u' is the unique vertex on the same

p-gon as v such that h(u) h(u'). Thus h(v) — h(u) h(v) — h(u') d(u', v) < d(u,u).
Now we suppose that inequality (1) is valid for every board which can be tiled by n — 1

dominoes, with n > 1. Let B be a board tiled by n dominoes. We cut one domino D out of
B along a grid-path w\, in such a way that w\ divides B into two regions: D and a board
B' tiled by n — 1 dominoes. Let u and u be vertices on the boundary of B lying in different
regions, namely u e B' and v e D. Consider a grid-path 102 in B such that d(u, v) is equal
to the length of W2- Let uo e wiHw2 be another vertex. Then h(v) — h (mo) < d(uo, v) and

h(uo) — h(u) < d(u, uo) by induction hypothesis. Thus h(v) — h(u) < d(u, uo)+d(uo, o),
but d(u, v) d(u, uo) + d(uo, v) since W2 is minimal.

Let us consider a bicolored grid. Let it be a grid-path. We define the oriented length of it,
denoted by ((n), to be the number of positively oriented edge-paths composing n minus
the number of nonpositively oriented edge-paths composing it.

Proposition 4. Let u and v be two vertices of the \ p, q}-grid, and it \ and nj be two grid-
paths from u to v such that the closed path ttxit^1 is the boundary of a board B. Then

e(it\) £(112) (mod p).

Recall the standard notation: n~x is the path n traveled in the reverse direction, and nt
is the concatenation of n and r, where it is required that the starting point of r coincides
with the ending point of n.
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Proof. The proof is by induction on the number of p-gons making up B.

If B is a p-gon by itself, then — ((^2) — Hit1) + Hitf1) 0 (mod p).

Now we suppose that the result is valid for boards which are made of (n — 1) p-gons. Let
B be a board which is made of n p-gons. We cut one p-gon out of B along a grid-path wo
from x\ to X2, where x\ and xi are vertices at n\. Let us call w 1 and 102 the subpaths of
n\ that respectively go from u to x\ and from X2 to v. Notice that the paths (i«i woW2)xfl
and Tt\(u>iIÜ0W2)-1 respectively enclose« — 1 and one p-gons, therefore

((n\) - ({112) [((ti\) - {(w\woW2)]-\-[C{w\woW2) - C(n2)]=0 (mod p).

Let n be a grid-path. By a lifting of tz we mean the multivalued function H defined on the

vertices of n which is described as follows: if m,..., v„ denote the consecutive vertices
of it so that 7i — Uu,-+i], then

H(uk)
0 if* l;
^(u*=l ["/> «i-t-iD if k 2,

where U*~j [tp, n,+i ] denotes the subpath of 7r starting at iq and ending at vk. Notice that

H is not strictly a function, because there may be self-intersections of tt ; if the path passes
through a vertex more than once, the value of H at that vertex is not necessarily unique.
The next result responds when H is in fact a function on the boundary vertices of a board.

Proposition 5. Let B be a bicolored board, and n be a simple closed grid-path which

represents the boundary of B starting and ending at some vertex u. The value of the lifting
of n at the final vertex of 71 is equal to zero if and only if the number of black p-gons
contained in B is equal to the number ofwhite p-gons contained in B.

Proof Suppose that B encloses the same number of white and black p-gons. Let U be the

set of edges that form the part of the black p-gons contained in B, and W the set of edges
that form the part of the white p-gons contained in B. Since B contains the same number
of white and black p-gons, we have \U\ \ W\. Moreover, each interior edge belongs to

exactly one black p-gon and one white p-gon, therefore tz travels by the same number of
positively oriented edges than of nonpositively oriented edges. It follows that the value of
the lifting of k at the final vertex of n is equal to zero.

The converse is proved following the same idea.

Theorem 6 (Thurston). Let B be a bicolored {p,q}-board. We select arbitrarily one
boundary vertex to be the starting and ending point ofa simple closed grid-path 7t which
describes the boundary of B. Consider the lifting H of tz, and suppose that the value of H
at the ending point of tz is equal to zero. If H (v) — H (u) < d(u, v) holds for any pair of
vertices u, v in tz, then there is a tiling of B by {p, q\-dominoes.

The condition on the value of H at the ending point is necessary by Proposition 5.
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Proof. We shall extend the function H to every interior vertex x e B by making

H (x) min{H(u) + d(u,x)}. (2)
vex

By Proposition 2, it is sufficient to check that the first axiom of the height function definition

is satisfied. This will be a straightforward consequence of the next two claims.

Claim: H(y) — H(x) < d(x,y) for all vertices x,y e B. To prove this, consider a

vertex ux e it such that H(x) H(ux) + d(ux, x). Since H(y) < H(ux) + d(ux, y) <
H(ux) + d(ux, x) + d(x, y) H (x) + d(x, y), it follows that H (y) — H(x) < d(x, y).
Claim: Let x and y be adjacent vertices of B such that [x, y] is positively oriented. Then

H(y) H(x) + 1 (mod p). This is immediate from Proposition 4 and the way that H
has been constructed.

Since {p, oo}-boards have no interior vertices, when q oo it is not even necessary
extending H to the interior of B in the proof of Theorem 6.

Theorem 6 has a converse (Corollary 8). To prove it, we need first a converse of Proposition

2.

Proposition 7. Let B be a bicolored [p, q\-board. There exists a height function defined
on B if B can be tiled by {p, q}-dominoes.

Proof. It is by induction over the number of dominoes needed to tile B.

When B is a domino, the lifting of the boundary of B defines a height function over B.

Now we suppose that every board tiled by n — 1 dominoes can be provided with a height
function. Let B be a board tiled by n dominoes. We cut B along a grid-path w, in such

a way that w divides B into two regions: one domino D and a board B' tiled by n — 1

dominoes. Then, the height function defined over B' can be extended to B naturally.

Corollary 8 (Thurston). Let B be a bicolored {p,q}-board. We select arbitrarily one
boundary vertex to be the starting and ending point ofa simple closed grid-path it which
describes the boundary of B. Consider the lifting H of it, and suppose that the value of H
at the ending point of it is equal to zero. If H (u) — H {u) < d(u, v) is not satisfiedfor any
pair of vertices u, v in it, then there is no tiling of B by {p, q)-dominoes.

Proof. If H(v) — H(u) < d(u, d) is not satisfied for any pair of vertices u, v in it, there
is no height function h on B by Proposition 3. The result follows from Proposition 7.

3 Algorithm
Identity (2) provides an algorithmic solution to the tiling-by-dominoes problem. This
algorithm has the board B to be tiled for initial data. The first step to do is to lift an arbitrary
simple closed grid-path it representing the boundary of B. If the final value of the lifting
does not correspond to the initial value then a tiling does not exist by Proposition 5. If the

lifting of it gives a function H, an extension of H over the interior vertices is defined using
identity (2). This can be done recursively, beginning with all the boundary vertices whose
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height ho e Z is the smallest, following the positively oriented edges from these vertices

given all vertices of height ho + 1 at once. Then we obtain all the vertices of height ho + 2

from those of height ho + 1 in the same way, but it is necessary to examine the new and

previous values on the boundary looking for inconsistencies: if the previous height agrees
with or is less than the new one, it is left the previous and the process continues, but if
the previous height is greater than the new one, a tiling is impossible by Corollary 8. The

process is continued until all vertices are covered, or until we find an inconsistency in the

height values, which proves impossibility.

4 Examples

4.1 Figure 4 revisited

The implementation of height functions to find the tiling of Figure 4 is illustrated in Figure

5. The bicolored board contains 5 white and 5 black pentagons. By Proposition 5 a

lifting of the boundary gives a function H defined over the boundary vertices of the board.

After that, a height function over the interior vertices is defined successfully by using the

identity (2). Finally, a tiling by {5,4}-dominoes is obtained by deleting the edges whose
ends have difference 4.

4.2 Figure 1 revisited

Figure 6 is a hyperbolic variant of Figure 1. It is clear that a tiling by dominoes is impossible.

Notice that the height function on the boundary does not satisfy identity (1).

l l

7 8 7 8 7

Figure 6: In this hyperbolic board, the adjacent vertices with height 1 and 7 do not satisfy
identity (1).

5 About the birth of height functions: Cayley graphs

Conway and Laganas [2] introduced Conway's tiling groups which give a necessary (but
not sufficient) condition for a domain to be tileable. The technique allows us to address

Euclidean tiling problems where the board is as above (i.e., a {p, q}-board whose boundary
is a simple closed grid-path on a grid {p, q}) but the tiles can be formed by more than two

p-gons, being its boundaries simple closed grid-paths. The case {6, 3) also is allowed, i.e.,
it is not necessary to have a bicolored grid.

Each tiling problem consists of three data: a grid, the tiles, and a board. Below we
summarize the use of each data in the method of Conway.
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Grid It determines a group F which describes all the grid-paths starting at a given
vertex. When q is even, F is the free group with q/2 generators. For example,
the words in F (X, Y) describe grid-paths in the grid {4,4}: symbols X, X-1,
Y and Y~l are associated respectively with one horizontal step to the right, one
horizontal step to the left, one vertical step upward and one vertical step down. On
the other hand, the words in F (ao, a\, «2 : Gq a2 a2 e) describe all
the grid-paths in the grid {6, 3} starting at a given vertex: symbol a* is associated
with one step in a direction parallel to the unit vector (cos(2tt£/3), s\n{2nk/?>)),
for k 0, 1, 2.

Tiles Each tile T determines a word W e F obtained by traveling along its boundary.
Conway's tiling group G is the quotient of F by the relations describing the tiles,
that is, G F/(W{,..., W;-), where Wj is the word corresponding to the tile Tj.
For example, Conway's tiling group for the dominoes problem in the grid {4,4} is

G (X, Y : X2YX~2Y~l Y2XY~2X~l e). (3)

Notice that G is well defined since a change of the starting point to travel the

boundary of T gives rise to a conjugate word, and going around T in the other
direction (clockwise or counterclockwise) gives rise to an inverse word.

Board The perimeter of the board B also gives a word Wo. Conway's criterion says: If
B can be tiled by tiles 7j,..., 7^, then Wo e in G. The proof of this result is

quite easy; one can try by induction over the number of tiles, for instance.

The Cayley graph T(G) of G is a resource commonly used to analyze whether Wo e.

For the Euclidean cases {4, 4} and {3, 6), Thurston [7, Section 4] had the idea of
embedding r(G) in R3, thereby obtaining an algorithm that quickly decide whether a given
{p, <7}-board is tileable by dominoes. For example, when G is given by (3) the vertices of
T(G) are the points (x, y, z) e R3 for which

0 if x and y are both even,
1 if x is odd and y is even,
2 if jc and v are both odd,
3 if x is even and y is odd.

There is an edge of T(G) joining the vertices u, v e T(G) just when \u — v\ \f2 (see

Figure 7). The orthogonal projection of T(G) to the xy-plane maps edges of T(G) onto
edges of the square grid (see Figure 8). A 2-complex T2(G) is defined by gluing hexagons
onto T(G); each hexagon corresponds to a domino by the orthogonal projection (see Figure

9). A lifting of a tiled board B is a continuous inverse of the orthogonal projection,
defined on B. This is just a heightfunction.
Hence a fixed tiling of B lifts to a surface So C r2(G) such that the orthogonal projection
So —> B is a bijection. In fact, the identity (2) and the above algorithm based on it were
used by Thurston to produce a surface £ c T2(G) which is the lowest among all surfaces
S c r2(G) satisfying two conditions:

1. the orthogonal projection S —> B is a bijection,
2. ds as0.

z
(mod 4)
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(0,0 4)

(0,0,0)

Figure 7: A small portion of the Cayley graph r(G).

S

V

> I i >

u

V X

Figure 8: Perspective view of f (G) from above.
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