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1 Introduction

A lattice A in R2 is a free Z-module of rank 2, so A XI? for some matrix X
(xi, X2) e GL2OR). Here, the column vectors xi, X2 form a basis for A and X is referred

to as the corresponding matrix. The determinant of A, denoted by det(A), is defined to be
I det(X) I and does not depend on the particular choice of a basis for A. We define V (A) to
be the closure of the set of all vectors in R2 which are closer to 0 than to any other vector of
A; i.e., the Voronoi cell of 0 (see Figure 1). The area of the Voronoi cell is equal to det(A)
and the real plane is tiled with translates V(A) + y for y e A. We inscribe a circle centered

at a point of the lattice into each such translate and denote its largest possible radius with
r(A). Since all these circles are disjoint, we obtain a circle packing in R2, which is called

Im Jahre 1910 bewies Axel Thue, dass die dichteste Kreispackung in der Ebene durch
die dichteste Kreisgitterpackung realisiert wird. Die dichteste Kreisgitterpackung
wiederum liefert das hexagonale Bienenwabengitter, wie Lagrange schon 1773 nachwies.

In der vorliegenden Arbeit geht es nun darum, eine Folge von ebenen Gittern zu
konstruieren, deren Basisvektoren ganzzahlige Koordinaten haben und welche das

hexagonale Gitter approximieren. Dabei kommen Methoden der elementaren Zahlentheorie

zum Einsatz. Diese Gitter beantworten dann die folgende Frage: Für teilerfremde Zahlen

N,a,b mit 0 < a,b < N definiere man die Menge

{{na (mod N), nb (mod N)) : 0 < n < N).

Wie gross ist die kürzeste Entfernung zwischen Punkten einer solchen Menge in

Abhängigkeit von /V? Welche Parameter N,a,b liefern die grösstmögliche kürzeste
Distanz?
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the lattice packing corresponding to A. The density of this packing is given by

area of one circle k r (A)2
A (A)

area of the Voronoi cell det(A)

The classical lattice packing problem in R is to maximize this function on the space of
all lattices and its answer goes back to works of Lagrange (1773), Gauss (1831) and Thue
(1910, [11]): The density function A on lattices in
lattice

is maximized by the hexagonal

Aft : (' l)
The hexagonal lattice is also the solution to the general circle packing problem in I

was first proven by L. Fejes-Töth in 1940; see [1, 2, 9].
which

Figure 1 Left: The Voronoi cell V(Aft) (thick) with 9 points of the lattice and the corresponding circles and

triangles. Right: A lattice and its successive minima.

In particular, it can be shown (see, e.g., [2] for a recent variant of the proof or [8] for a
classical and elementary treatment) that if A is a lattice of rank 2 in R2, then

A (A) < A (A/,)
2v/3

with equality if and only if A can be obtained from A/, by rotation and dilation; i.e., the

two lattices are similar.

Finally, let B be the unit circle centered at the origin in M2. Given a lattice A, we define
the Minkowski successive minima Ai < 22 of A to be

A,- inf{A e 1+ A D AB contains i linearly independent nonzero vectors),

in which i 1,2. We say that the vectors xj, X2 e A correspond to successive minima if
they are linearly independent and

l|Xl II Al, ||x2 II À2-

In other words, Ai A\(A) is the length of the shortest vector of the lattice A and as such

it is equal to twice the in-radius of the largest circle inscribed in V (A). Hence,

A (A)
n A2,

4 det(A)

In this note we are interested in approximations of A ft with good packing properties.
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We ask:

How to approximate A/, with lattices Q XT? where X is an integer matrix
such that A (A/,) — A(Q) < s for a given e > 0?

We define a family of lattices Cls, s e N, as follows. Set n 2s + 1 and let b, N e N be

such that their ratio has the particular continued fraction expansion

TT TT" [0, b\, b2, •.., bn] — [0,2,1,2,1,, 1,2]; (1.1)
N Ns

see Section 3 for an explanation of this notation. With this we define

Theorem 1.1. Let Q v and A/, be as defined above. Ifs — 2m + 1 is an odd integer, then

lim A(Q2m+l) A(Afc).
m—too

Theorem 1.1 can be interpreted as follows: If we scale each lattice Qv so that its shortest

vector has unit length, then this sequence of lattices converges to a limit lattice which is a

rotated version of the hexagonal lattice; see Figure 2 for an illustration. We calculate the
rotation angle 3tt/4 in Remark 4.2.

Figure 2 The rotated hexagonal lattice (left) and the lattice £2; scaled by l/(2\/2) which is the length of its

shortest vector (right).

This result is closely related to an interesting question about lattices modulo N which was
the original motivation for this note. For integers 0 < a,b < N, with gcd(A, a,b) — 1

we define the lattice modulo N, TlN,a,b, generated by the pair (a, b) as

nN,a,b '= {(na (mod N), nb (mod N)) : 0 < n < N).

Thus, IIN,a,b is a subset of the square [0, N— l]2. We are interested in the shortest distance
between points of IIN.a.b This distance is exactly given by the length of the shortest vector
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Figure 3 The left lattice modulo 23 does not contain the shortest vector of the corresponding lattice, whereas

the lattice modulo 23 in the middle contains the shortest vector. On the right is the regular grid Gioo with

/(Gioo)= 1.

of the lattice II that is generated by the vectors (a, b), (0, N), (N, 0). Thus, whenever we
work with lattices modulo N, we abuse notation and write Ai (ITN,a,b) for the shortest
distance between points in IIN,a,b\ see Figure 3.

For every lattice IIN,a,h with gcd(/V, a, b) 1 and arbitrary, distinct points X (na, nb),
Y (ma, mb), we have that || (X — Y) (mod N) || > \/2. Together with a simple area

argument [6, Lemma 3.1], we obtain

V2<Xi(UN,aJ,) < 3/2VN.

Using this observation, we would like to compare the shortest vectors of different lattices.

Thus, we define

f(nN,a,h) — h(^N,a,b)/sfN.

Let N n2 and G,\ C [0, n2 — n]2 be the regular grid generated by (n, 0) and (0, n); see

Figure 3. It is easy to see that

XI(Gn)/VN= L

Naturally, we would like to know whether there is a systematic way to generate lattices
modulo N with /(II v.a.ft) ~ 1 for all N. This question was answered affirmatively in [6,
Theorem 1.3], Interestingly, one can show even more: namely that for infinitely many N
there exists a pair of integers (a, b) such that / (Id v > 1; [6, Theorem 1.4]. This result
motivates to ask:

How large can f(N, a, b) be? How do lattices with long shortest vectors look
like

Since the densest circle packing in the plane is realized by the hexagonal lattice, we
assume to have N points arranged on a scaled regular hexagonal lattice with edge length
z contained in [0, N — l]2. How long can z be? Ignoring boundary effects, each point is

contained in 6 equilateral triangles and, thus, we have roughly 6N/3 2N triangles in our
lattice; see Figure 1. Since the area of an equilateral triangle of edge length z is V3/4 • z2,
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we can roughly compute the maximal possible edge length z z(N) as

a/3 / 2
max 2N — z2 < (N - l)2 => z « VÄ — « 1.07457^.
zeR 4 V V3

Setting /max(AO := maxi<Wi/,<^ /(ITN,a,b), we answer [6, Question 1.10] and prove in
a constructive way that there exist lattices modulo N that come arbitrarily close to this
value:

Theorem 1.2. For every e > 0, there exist infinitely many N such that

/max(A/ > J—j= — £.

Remark 1.3. It is possible to generalize (1.1) and consider integers b, N such that

T, TT1 t°' bi' b2> >W [0, Jk, 1,*, 1 1, *],
N NKs

for arbitrary IsN, denoting the corresponding lattices We can calculate the length
of the shortest vectors of all lattices of the family with our method and note that the

lattices for small values of k have also long shortest vectors. However, it can be shown that

max/(Qi-,s) =/(Q2,i) and /(Q*,*) > /(Q*+i,î) (I-2)
k

for all odd s > 3 and k > 2. We omit the proof of the general case in the following, since

it is very technical, without adding any new insights.

2 Connection to other problems
We briefly describe two situations in which the answer to our problem is of interest. First,
we consider the famous traveling salesman problem which asks for the length C(x\,
xn) of the shortest path through the points {jci,..., xv | c Setting x„(n+\) := xCT(i),

we write
N

ù(x\,..., xn) min ^ l|x:(x(n) xa(n+1)|j,
a 4

n=1

where the minimum is over all permutations a of {1,2,..., N}. It can be shown that the

length of the shortest path through all points of the lattice Htz,a,b (scaled to [0, l]2) is

essentially equal to Ai(njv,öj&); see [6]. Thus, our results give an idea how long shortest

paths through the points of a lattice modulo N can possibly be. This is especially
interesting with respect to a result of Karloff [4], who obtained a general upper bound of
1.39159V^V + 11 for the length of the traveling salesman tour through any set of N points
in [0, l]2.

As a second appearance of our problem, we suppose to find ourselves on the two-dimensional

torus T2 equipped with N candles and want to position the candles in such a way
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that they heat up the space as efficiently as possible. In [7] a general construction of point
sets was given that uses elementary number theory as the basic ingredient ensuring a fast

heating of the space. Interestingly, for a given N the quantity

g(N) := max min \k2 + m2 : m p + k 0 mod N [
l<p<N-l (k,m)e1? 1 '

(k,m)?(0,0)

plays a crucial role. Geometrically, g(N) is determined by the largest shortest vector arising

in the N — 1 lattices spanned by (1, — p) and (0, —N) for 1 < p < N — 1, since

m p + k 0 if and only if (m, k) is of the form fi(l, —p) + ^(0, —N) for t\, t2 Z.

3 Properties of the denominators of the convergents

In this section we study algebraic expressions of the form

b0 + - l—. (3.1)
bi+ '

i
62+-+5T

for non-negative integers bo,... ,bn. We refer to the classical book of Khinchin [5] for a

thorough introduction into this topic. Here, we just recall the most important notions and

facts required to prove our results. An expression of the form (3.1) is calledfinite continued
fraction and can be represented as the ratio of two polynomials, or, in case bo,..., bn have

concrete numerical values, as an ordinary fraction pn/qn- Usually, an expression of the
form (3.1) is written in a shorter way as [bo, bi,..., bn\. Truncating a given continued
fraction after its first i, 1 < i < n — 1, elements results in a fraction Pi/qi which is called

an (th order convergent of pn/qn It can be shown that the fractions pi/qi become better
and better approximations of p„/qn as i increases.

We are interested in the particular palindromic continued fraction of the form

^ - [0, b{, b2,..., bn] [0,2, 1, 2, 1,..., 1,2], (3.2)

In the following we write <y, for the denominators of the convergents of the particular
fraction b/N. First, we determine the general form of the qi, before we obtain an important
inequality for these numbers.

Lemma 3.1. Let n 2s + I. If N, b e N are as in (3.2), then

^ ((2 - V3)m (V3 - 1) + (2 + V3)m (\/3 + 1)) ifi 2m is even,

-L ((2 + V3)m+1 - (2 - V3)m+1) ifi =2m + l is odd.

Proof. According to [5, Theorem 1] we obtain the denominators of the convergents of
b/N via the recurrence

q, b, qt-i + qi—2,
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with qo 1 and q\ b\. Consequently we get two different equations in our case
depending on the parity of i :

92m 92m—1 "h 92m—2 (3-3)

92m + l 2 * 92m + 92m —1- (3.4)

Setting qim Am and 92m+i Bm we can rewrite (3.3) and (3.4) as

Am 4Am_i — Am—2, and Bm Am+i — Am.

We solve the first recurrence for Am via the characteristic equation

r2 - 4r + 1 0,

and obtain

r\ 2 — y/3 and r2 2 + V3.

Setting

Ao 1 air® + ajr\, and Ai 1 + b\ — 3 air/ + a^r\,

we get
3 — ri 3 — ri

ai 1 and ai
r2 - ri r2 — r i

The general solution is then given by Am a\r^ +a2r from which we obtain the stated

closed form expressions for the qi.

To illustrate this lemma and to motivate the next, let us look at a concrete example. Set

«=7 2- 3 + 1 to obtain

41 b3
[0,2, 1,2, 1,2, 1,2] —.112 N3

It is an easy exercise to calculate the 6 convergents,

1 1 3 4 11 15

2' 3' 8' TT' 30' 4?

by hand and to verify the values of the denominators with our formula. Interestingly, we
can observe even more from these values:

q2 + 95 4 + 900 > 92 4" 94 — 9 + 121 > 93 4" 93 64 + 64.

This is not a coincidence, but holds in general as the following lemma shows.

Lemma 3.2. Let n 2s + 1 with s > 3. If N, b e N are as in (1.1) then, for i —

1 ,...,s-l,
\(qi )MI( *+1 )l
I \9n—i—1 / II II \9«-i-2/ I
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Proof. We note that 0 < 2 — V3 < a/3 — 1 < 1. In the following we first prove the
assertion for i 1,..., s — 2 and distinguish two cases depending on the parity of i. If
i 2m, then

(l + (1 + V3)(2 + V3)m) > q2m > ^ (d + V3)(2 + a/3)"1)

On the other hand, if i 2m + 1, then

-J=(2 + V3)m+1 > q2m+1 > -^ ((2 + V3)m+1 - l)

To prove the assertion we set X 2 + V3 and show that qf + q2_
_, — qf+, — <72_,_2 is

positive.

Case 1: If i 2m then

2 2 ^
^

1 I /T\2 v2m ^
\r2m-\-2

Ilm ~^2m+l > + V3) X --X
Y2m+2/(l+V3)2 l\

^ 12X2 3 J

Moreover,

I2(s-m) ~ ^2(s—m—1)+1 > ^(1 + V3)2(2 + V3)2(—) - \x^
x2fr-m)/a + >/3)2 1

By assumption 2 < i — 2m < s — 2 and s > 3, hence 2(s—m)—2(m + l) 2s —Am —2 >
2. We continue our calculation and multiply the above results by x_2^m+1^ before we sum
them to obtain

y2(j—m)—2(m+l) / (1 + V3)2
_

1 \ _
d + V^)2 1

\ 12 3 J \2X2 3

>32Ai + ^_A_ (1 + V3F
~ y 12 3 J 12 - 32 3

where we used that X > 3.

Case 2: If i 2m + 1 then

lL+l - <?22(m+i) > \ {xm+1 - !)2 - ^ (i + U + V3)X"'+1)2

_ v2(«+D (i _ q+^)2, 1

_ 5+^\
y 3 12 4X2<m+1) 6X'"+1 J
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Since X > 3 we see that the expression in brackets is for every non-negative m bounded

by — 1 and 0. Next,

<4_m_1)+1 - >l- (xs~m -1)2 -1 (i + (i+V3)x—')2
X2(s-m) 2Xs-'n 1 (1 + y/3)Xs~m~l (1 + V3)2X2<i"m-1)

~ 3 3
+

4 6 12

> X2(s-m) A _
(1 + V3)2 1

_
13 + V3 \

I 3 12.32 4X2(s-m) l8Xs~m J'
in which we used again that X > 3. Moreover, we observe that the expression in brackets
is positive:

1 (1+V3)2 1 13 + a/3

3 12 - 32
+ 4X2<s-ml 18Xs~m

>
l _(l + V3)2_13 + vg

— 3 12 - 32 18-9

Since 2s — 4m — 2 > 2, and X2 > 32 it follows that

<72m+l - ?2(m+l) + l2(s-m-1)+1 _ ^2(s-m-l) > 0-

Finally, a direct calculation verifies the assertion for i s — 1 as well.

4 Shortest vectors

In this section we determine the shortest vectors of the lattices Q5. Already Gauss [3]
invented an algorithm that finds a reduced basis of a 2-dimensional integral lattice. Therefore,

arrange the given basis such that b\ is shorter than bi and find k Z such that bi—kbi
is of minimal Euclidean length. Then replace the vector b2 by the vector (i>2 — kb\) and

repeat this procedure until k 0. If k 0, return the pair (b\, hi). The shorter of the two
basis vectors is then the desired shortest vector of the lattice.

Lemma 4.1. Letn — 2s +1 and s >3.IfN,b e N are as in (1.1) then the shortest vector
oftt-NXb - "s is ((-1 )sqs,qs).

Proof. We start with the vectors (1, b), (N, 0), (0, N) and use the method outlined in [10,
Section 3] to compute a basis of this lattice. In particular, we obtain

(1,(1 -N)b) and (0, N),

which we immediately reduce to (1, b), (0, N).
We can rewrite these two vectors as (qo, qn-i), (<7-i, qn)- In the next reduction step we
replace the longer vector (0, N) as follows:

(a) -hn G)=CO -bn Cr,)=U)'
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since bn b\. In the second step we obtain

(£K'(£)-(£)•
Applying Lemma 3.2 we conclude again that (qo, qn-i) is longer than both (~q\, q„ 2)
and (q2, qn-3) and is thus replaced. To turn to the general step we assume that

and /(-l)i+1?i+i\
\qn-i-1 V qn-i-2 J

is the reduced basis after the ith reduction step for i I,... ,s — 2. Then, we can reduce
this basis:

/(-1)'^A _ ((-iy+lqi+l\_((-l)i+2qi+2\
\qn-i-l V Qn-i-2 V qn-i-3 /

By Lemma 3.2 we can repeat this procedure until we reach ((— l)sqs, qs). Consequently
this vector is the shortest vector of the lattice.

Hence, we get if s is odd

Ai(Qi) / 2q} / 2
lim lim J —= /— 1.0745

s^-oo ,/A^ s^ooY q2s+i V V3

which finishes the proof of Theorem 1.2. For completeness, if s is even, then

limi!^=lim /iSU /' 0.7598....
S^°° ~JNS S-*OO Y Ç25+1 V V 3

Lemma 4.1 also implies a proof of Theorem 1.1. Since the shortest vector of Qv is given
by ((— qs) we obtain for odd s,

4(0,) JL2É- iM. rey i .1 i(At).
4det(Qs) 4^+1 4V3

Remark 4.2. Finally, we calculate the rotation angle for the hexagonal grid that we
announced in the introduction. We know from Lemma 4.1 that (—qs, qs) is the shortest vector

of Qs for odd s. Dividing this vector by its length gives a vector of unit length that

points in the same direction. We observe that

<?2m+l> <?2m+l)
lim -(A-kYm_>0° II(~q2m+l > qim+\)II

and the angle between (1,0) and (— 1/V2, 1 /\/2) is just arccos(—1 /V2) 3^/4.
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