**Zeitschrift:** Elemente der Mathematik

**Herausgeber:** Schweizerische Mathematische Gesellschaft

**Band:** 72 (2017)

Heft: 4

Buchbesprechung: Rezensionen

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 16.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Elemente der Mathematik

# Rezensionen

**P. Jolissaint: Fonctions génératrices et relations de récurrence.** 108 Seiten, CHF 35.00. Presses polytechniques et universitaires romandes (PPUR), 2015; ISBN 978-2-88915-157-8.

Rekursionen spielen eine zentrale Rolle in manchen Anwendungen der Mathematik. Sie wurden erstmals von Lagrange und Laplace mathematisch untersucht. Eine Rekursion ist, grob gesprochen, eine Definition, die sich selber im Definiens verwendet. Ein humorvolles Beispiel ist Hofstadters Gesetz aus Gödel, Escher, Bach: It always takes longer than you expect, even when you take into account Hofstadter's Law. In der Elementarmathematik bildet die Fibonacci-Folge das klassische Beispiel einer rekursiven Definition: die Folgenglieder sind durch die lineare Rekursionsbeziehung  $F_{n+1} = F_n + F_{n-1}$  miteinander verbunden. Mit der Methode der erzeugenden Funktionen lässt sich eine explizite Formel für  $F_n$  finden, die nach J. Binet (1786–1856) benannt ist, obwohl de Moivre sie als erster hergeleitet hat.

Die Binet-Formel ist denn auch das einleitende Beispiel in Paul Jolissaints Monographie, die in der Reihe Enseignement des mathématiques erschienen ist. Im ersten Kapitel werden die erzeugenden Funktionen systematisch eingeführt. Als erste Anwendung der erzeugenden Funktionen wird beispielsweise gezeigt, wie sich mit ihrer Hilfe Erwartungswerte von Zufallsvariablen berechnen lassen, und zwei Unterkapitel sind dem Inklusions-Exklusionsprinzip gewidmet. Ein eigenes Kapitel beschäftigt sich mit der Anwendung erzeugender Funktionen in der Kombinatorik. Im zweiten Teil der Monographie wird die Theorie der linearen Rekursionsbeziehungen entwickelt. Das einleitende Beispiel dieses Teils ist Lagranges Ansatz zur Lösung der schwingenden Saite: Lagrange modellierte diese als eine Reihe von Massenpunkten, die durch Federn verbunden sind, und erhielt auf diese Weise eine Rekursionsbeziehung für die Positionen der Massenpunkte. In den anschliessenden Kapiteln wird die Theorie der homogenen und inhomogenen Rekursionsrelationen sehr vollständig dargestellt, immer wieder illustriert mit einfachen Beispielen. Am Schluss liefert Jolissaint einen kurzen Einblick in die Welt der nicht-linearen Rekursionen. Hier beginnt bekanntlich die Chaostheorie; das klassische Beispiel ist die logistische Rekursion. Originellerweise wählt Jolissaint nicht diese als erläuterndes Beispiel, sondern die Catalan-Zahlen. Die Catalan-Zahl  $c_n$  gibt an, auf wieviele Weisen sich n Klammernpaare auf korrekte Weise setzen lassen. Für n=3 Klammernpaare erhält man die fünf regulären Ausdrücke ()()(),()()(),()()),()()() und ((())). Somit ist  $c_3 = 5$ . Die Catalan-Zahlen erfüllen die nicht-lineare Rekursion

$$c_{n+1} = c_0 c_n + c_1 c_{n-1} + \dots + c_n c_0.$$

Mit Hilfe der erzeugenden Funktionen lässt sich eine explizite Formel für  $c_n$  herleiten. – Das Buch schliesst mit einem Kapitel, das eine Sammlung von Übungsaufgaben liefert.

Jolissaints Monographie ist im *no-nonsense* Stil verfasst, ist aber dank der vielen eingestreuten Beispielen flüssig zu lesen. An einigen Stellen werden Kenntnisse in komplexer Analysis und in Masstheorie vorausgesetzt. Im Kapitel, welches die charakteristischen Polynome behandelt, sind bedauerlicherweise Jolissaints eigene Resultate zum Benfordschen Gesetz nicht erwähnt. Jolissaint hat in den Elementen der Mathematik die beiden Artikel *Loi de Benford, relations de récurrence et suites équidistribués I et II* veröffentlicht (El. d. Math., **60**, 2005, und **64**, 2009). Hoffen wir, dass er in der zweiten Auflage dieses kleinen Juwels von einem Buch ein Kapitel über Benfords Gesetz hinzufügen wird!

Chr. Leuenberger, Fribourg