
Tile the group

Autor(en): Ginosar, Y.

Objekttyp: Article

Zeitschrift: Elemente der Mathematik

Band (Jahr): 73 (2018)

Heft 2

Persistenter Link: https://doi.org/10.5169/seals-760281

PDF erstellt am: 25.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-760281


Elem. Math. 73 (2018) 66 - 73

0013-6018/18/020066-8
DOl 10.4171/EM/354

© Swiss Mathematical Society, 2018

I Elemente der Mathematik

Tile the group

Y. Ginosar

Yuval Ginosar received his D.Sc. in mathematics from the Technion (Israel Institute
of Technology) in 1996. Since 2002 he is a faculty member of the University of Haifa.
His research interests are group-graded algebras, cohomology of groups and projective
representation theory.

1 Tiling the integers by arithmetic progressions

Try to partition the integers into a finite number of arithmetic progressions (such that every
integer will appear in exactly one of these progressions).

An immediate example is the partition of Z into the even and odd integers, both are
arithmetic progressions with modulus 2. More generally, for any natural number n, the integers
can be decomposed to n arithmetic progressions, all of modulus n. That is

Z 77Z U (1 + nl) U • • U (n — 1 + nié), (1)

where k + nl denotes the subset of integers whose remainder after division by n is k,
0 < k < n — 1.

Die einfachste Partition der ganzen Zahlen Z in arithmetische Folgen ist die Aufteilung
in gerade und ungerade Zahlen. Paul Erdös vermutet, dass jede nichttriviale Partition
der ganzen Zahlen in endlich viele arithmetische Folgen mindestens zwei Folgen zur
selben Schrittweite aufweist. Diese Vermutung wurde in den 1950er Jahren bestätigt.
1974 schlugen Marcel Herzog und Jochanan Schönheim vor, das Problem zu
verallgemeinern und statt Z beliebige Gruppen und anstelle der arithmetischen Folgen
Nebenklassen von endlichem Index zu betrachten. Sie stellten also die Frage: Gibt es in
jeder Partition einer Gruppe durch endlich viele Nebenklassen von endlichem Index
stets mindestens zwei Nebenklassen zum selben Index? In dieser Allgemeinheit ist die

Frage noch heute offen, sogar bei endlichen Gruppen. Der Autor der vorliegenden
Arbeit beweist nun die Herzog-Schönheim-Vermutung für alle Gruppen deren Ordnung
eine bestimmte zahlentheoretische Eigenschaft aufweist, insbesondere für alle Gruppen

bis zur Ordnung 240. Dabei spielen ägyptische Brüche eine wichtige Rolle. Auch
die unsprüngliche Erdös-Vermutung erscheint in neuem Licht.



Tile the group 67

Question. Are these partitions, considered as trivial tilings, the only examples?

It turns out that non-trivial tilings abound. For example, the even integers are a disjoint
union of two arithmetic progressions, namely, the integers which are divisible by 4 and
those who have a remainder 2 after division by 4. These two progressions, together with
the odd integers, yield the non-trivial tiling

Z 4Z U (2 + 4Z) U (1 + 2Z).

More generally, given any trivial tiling (1), take one of the progressions, e.g., k + nL, and

split it by partitioning it with modulus m

m—1

k + nZ — (k + in + mnZ).
;=o

A new tiling of the integers is obtained

in—1

Z (I + nZ) U |^J (k + in + mnZ).
0<l&k)<n-l i=0

Moreover, if

l^J (at + fif/Z)

i=i
is a partition of the integers, then so is

m—l

[J (ai + diZ) U I^J (at + idk + mdt:Z). (2)
1 <l(Ak)<s i=0

Starting with a trivial partition (1) and applying any sequence of splittings (2), one can
obtain a variety of partitions of the integers. But even this procedure does not exhaust all
the possible partitions of the integers into arithmetic progressions.

Example (S. Porubsky [8, §2]). The following is a partition of the integers which is not
obtained as a splitting ofany coarser partition.

Z 6Z U (1 + 10Z) U (2 + 15Z) U (3 + 30Z) U (4 + 30Z) U (5 + 30Z)

U (7 + 30Z) U U(8 + 30Z) U (9 + 30Z) U (10 + 30Z) U (13 + 30Z)

U (14 + 30Z) U (15 + 30Z) U U(16 + 30Z) U (19 + 30Z) U (20 + 30Z)

U (22 + 30Z) U (23 + 30Z) U (25 + 30Z) U U(26 + 30Z) U (27 + 30Z)
U (28 + 30Z) U (29 + 30Z).

Note that in every step of the above procedure of splittings (2), the largest modulus appears
more than once. P. Erdos conjectured that in any partition of the integers into (more than

one) arithmetic progressions, the largest modulus appears at least twice.

Erdôs' conjecture was proven in the 1950s independently by H. Davenport, L. Mirsky,
D. Newman and R. Rado using generating functions and complex variables. Their beautiful
argument (see, e.g., [1, 7]) would be regarded by Erdos himself as "from the book".
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Partition by Arithmetic Progressions (PAP) Theorem. Let

S

Z LJ(a' + dtZ) (3)

be a disjoint union of the integers to arithmetic progressions of moduli d\ < • • • < ds,

where s > 1. Then ds-\ ds.

In fact, by [1, Theorem 5], [7, Theorem 2], ds appears in the partition (3) at least p times,
where p is the smallest prime dividing ds. Another strengthening of PAP Theorem [1,
Theorem 4] says that any modulus <7/ in the partition (3) divides another modulus dk in
this partition for some k I. In particular, all moduli which do not properly divide any
other modulus in (3) appear at least twice.

Many more details about covers of the integers by arithmetic progressions can be found in

2 The Herzog-Schönheim conjecture

Question. Can one view PAP Theorem as a special instance ofa general phenomenon?

The integers Z are an example of a group, whereas an arithmetic progression k + nZ is

nothing but a coset with respect to the subgroup nZ < Z. The modulus n is> the index
of this coset in Z. It is thus natural to pass from partitions of the integers into arithmetic
progressions to partitions of general groups into cosets.

Definition. Let {Hi}sl=l be subgroups of a given group G, all offinite index. Suppose that

is a decomposition of G to a disjoint union ofcosets giH\. This partition has multiplicity
if there exist 1 < j\ ^ 72 < s such that Hjt and Hj2 are ofequal indices in G.

The following is a natural attempt to generalize PAP Theorem.

Conjecture (M. Herzog and J. Schönheim [3]). A decomposition (4) of any group to a
disjoint union ofcosets offinite index with s > 1 has multiplicity.

A group G is termed HS if it satisfies the conjecture. That is, if any coset partition (4) of
G with s > 1 admits at least two cosets of the same index. For example, the group Z is HS

by the PAP Theorem.

The HS conjecture can be reduced to finite groups [5]. In other words, if all finite groups
are HS, then all groups are HS.

For example, to find multiplicities in the partition (3) it is enough to check all integers
between 0 and n — 1, where n :=lcm{di,..., ds}. This is a partition of the finite group
Z/nZ.

Question. Can one prove that a finite group G is HS only by knowing its cardinality?

[9, 10,11].

S

(4)
1=1



Tile the group 69

For a natural number 11, let A (;i) be the set of proper divisors of n. For example,

A(6) {1,2,3}.

Recall that Lagrange's Theorem says that the order of any subgroup of a finite group
divides the order of the group. Consequently, if a finite group G admits a coset partition
without multiplicity, then there exists a subset Ao C A([G|) such that

2>=IGI-
d sAo

This condition says that if 11 cannot be expressed as a sum of a partial subset of its divisors,
then any group of order n is FIS.

An important family of natural numbers satisfying the above condition is the deficient
numbers, i.e., those numbers which are larger than the sum of their proper divisors. Thus,
if n is a deficient number, then all groups of order n are HS.

In particular, if p is a prime number and m any natural number, then

„ni _ i

X rf i + p + + p»-i £_<pn — 1

deA(p"') y

and hence prime powers are deficient. Thus, p-groups (groups of prime power order)
are HS.

What about other natural numbers? The smallest number which is not a prime power is 6.

In fact, it is equal to the sum of all its divisors (i.e., it is a perfect number)

1 + 2 + 3 6.

Can a group of order 6 admit a partition into cosets of cardinality 1, 2, and 3?

Note that two arithmetic progressions, one of modulus 2 and the other of modulus 3, must
intersect. This follows from the well-known

Chinese Remainder Theorem (CRT). Let m and n be coprime numbers. Then for every
a,b eZ

(ia + mZ) n (b + nZ) 0.

Consequently, a coset partition of the integers cannot contain arithmetic progressions of
coprime moduli.

Surprisingly, the above observation is valid for any group.

Group-Theoretical CRT [12, Remark 2.2]. Let H\ and H2 be two subgroups ofa group
G such that their indices are mutually coprime. Thenfor every a,b e G, aH\C\ bHj f 0-

In particular, if (4) is a coset partition of a group G, then the indices of Hi and Hj in G

are not coprime for every 1 < i, j < s.

One can formulate a sufficient arithmetic condition for a finite group to be HS. Let (4) be

a coset partition of a finite group G and let n; := [G : Hi] be the corresponding indices.
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Then the tiling condition yields |G| Xz=t T7"> or alternatively

(5)

Suppose that (4) has no multiplicity. In this case (5) describes a representation of 1 as an

Egyptian fraction, that is the sum of distinct unit fractions (i.e., whose numerators equal
1 and whose denominators are positive integers). Then the Chinese (Remainder Theorem)
and the Egyptian (fractions) meet in the following

Corollary. Let n e N. Suppose that 1 cannot be represented as an Egyptian fraction (5)
such that

(i) all the denominators ni divide n, and

(ii) for every 1 < i, j < .s, and iij are not coprime.

Then every group oforder n is HS.

In fact, by an induction argument, a minimal counterexample to the HS conjecture must
admit a representation of 1 as an Egyptian fraction with the above conditions and,

additionally, 1

(iii) ni > 2 for every 1 < / < s.

The third condition is there since if one of the cosets gjHj in a coset partition (4) is of
index 2, then Uz=i ijtj SI Hi is a disjoint union of the complementary coset of gjHj, say

g'jHj. Shifting all the cosets by g'~l yields a partition of Hj itself. If the partition (4) has

no multiplicity, then so does this partition of the group Hj, which is of smaller order.

Example. A computer simulation shows that the smallest number n admitting an Egyptian
fraction (5) satisfying conditions (i), (ii) and (iii) is 240:

4 6 8 1U 12 16 20 24 30 40 48 60 80 120 240'

Consequently, all groups oforders smaller than 240 are HS.

Recently, L. Margolis and O. Schnabel have elaborated the above corollary, and by that
have significantly improved the order 240 to beat. Their work in progress employs
computer simulation which yields the order of 1,440 as a minimal candidate for a counterexample

to the HS conjecture.

The Herzog-Schönheim Conjecture is still open for more than four decades. There has

been much progress in the investigation of this problem over the years; visit [13] for a list
of classified publications on the conjecture as well as on related topics. To end this section,
here is a citation of a result which provides further sufficient conditions for finite groups
to be HS only in terms of their cardinality.

Theorem ([2]). Let G be a group of order p'\[ p'f p'lkk, where pi < P2 <•< Pk
are prime numbers. Suppose that either
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1. k < 2, or
2. k — 3 and p2 > 3 (i.e., |G| is not divisible by 6), or
3- n?=i(l + < 2. in particular if pi > + 1.

Then G is HS.

3 A Group-theoretical proof of the PAP theorem

Despite its beauty, it is not clear how the original proof of PAP Theorem can be used to
treat arithmetic progressions as special instances of cosets with respect to subgroups. This
is a good opportunity to adjust the proof into a group-theoretical language. For this part, a

basic knowledge in character theory is requisite.

Let CG be the group algebra of a finite group G over the complex numbers. Any coset

partition (4) of G gives rise to an equation in this algebra

2> 1>( 2>)eCG- (6)
geG 1=1 ^ he Hi

'

As mentioned above, to show that the group Z of integers is HS, it suffices to deal with
its finite quotient Z/wZ, where n is the 1cm of the moduli in the partition. This is a cyclic
group generated by one element. Using a multiplicative way, one writes

C„ - {l,x,.. ,x"-1},

where x is a generator of this cyclic group of order n. The subgroups of Cn are in one-to-
one correspondence with the divisors of n. That is, for every d\n, the subgroup

Hd := (xd),

generated by xd, is of order ^ and index d in Cn (x}(= H\).
Given a partition (3) of the integers with n =lcm{di}sl=v one can adopt the group theoretical

(multiplicative) writing (6) with G C„ to obtain

geHi(=C„) Z=1 yheHd, '
Next, the character group of Cn, denoted by Cn is the group of morphisms Hom(C„, C*)
to the multiplicative group C* C \ {0}. The group C„ contains exactly n characters

{XoYj=v where

j. C" ^ C*
' xa i-> exp ^2ni ^

The standard basis {x'}"~q of CCn can be replaced with the transformed basis \e/}yGcn>
where (see [4, Theorem 2.12])

j "-1

1=0
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The advantage of this basis is the orthogonality property of the above idempotents (see [4,
Theorem 2.13])

eXleX2 — àxi,X2exi (8)

for every %i, X2 e Cn, where <5V denotes Kronecker's delta function. Furthermore, the

following projection property

^
n—1

xaex ~^x(xa~l)xl x(x°)ex, a eZj e Cn (9)
11

1=0

provides a convenient way to multiply elements of the two bases.

Denoting for simplicity

ei
Xo

for any divisor d of n, one has

Lemma. Let 0 < d be a divisor ofn. Then

2> sï.<10)hsHd y=0

Proof. Develop the right-hand side to a double summation using the above notation

n—1

Z*i 7Z"i^i'd7=0 7=0

where

;Z*oVv
/=0 J

+ u—in—\ / 7*\ IÎ —I

(2ni -f)xl Y,aix'>
7=0 /=0 ^ ' /=0

:=igexp(2^.Zi) j J

(ID

^7w,i tZ
7=0

The rightmost equality in (12) follows from a standard result about the vanishing of sums
of roots of unity (see, e.g., [6]). Now, (11) and (12) yield

d-1 7-1

7=0 k=0 hÇ:Hd

proving the lemma.

The next step is to plug (10) in (7) for every subgroup Hd, in the partition (3) and get

V / d,-1n"=if"te
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Using (9), one obtains
S dl — 1 jn

nei Xo (xai)ej_. (13)

l=i 1

j=0
1

Now, let dm be maximal in (3), i.e., it does not properly divide any other modulus dj
participating in this disjoint union. Note that in this case e j_ does not appear in (13) as ej_

dm di

for any j > 1. It remains to show that the index dm appears at least twice in (3). Otherwise,
the idempotent e j_ would appear only once in (13), for I m and j 1 in the double

dm

summation. Multiply both sides of (13) by e_i_. Then the orthogonality property (8) yields
dm

0 on the left-hand side, and

(xa'")e_t_ ~ exp (lni gj_ + 0
(im dm Clm y um J dm

on the right-hand side. This is a contradiction.
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