§2. — Une quartique particulière.

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 23 (1923)

Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: **25.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

En comparant la première et la troisième des relations (8), on obtient d'abord :

$$\Sigma p_r \cdot p_s \cdot p_t = -\frac{1}{4} g_2 \cdot \Sigma p_r ,$$

ce qui peut s'écrire:

$$p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \left(\frac{1}{p_{1}} + \frac{1}{p_{2}} + \frac{1}{p_{3}} + \frac{1}{p_{4}} \right) = -\frac{1}{4} g_{2} \cdot (p_{1} + p_{2} + p_{3} + p_{4}) . \quad (9)$$

De la première et de la deuxième des relations (8), on tire ensuite $\frac{B^2}{C^2}$ et $\frac{A}{C}$ respectivement; on substitue dans la quatrième; après quelques simplifications très faciles, on obtient :

$$= (p_1 \cdot p_2 + p_3 \cdot p_4 - p_3 \cdot p_4 + p_2 \cdot p_3 + p_4) ,$$

$$= (p_1 \cdot p_2 + p_1 \cdot p_3 + p_1 \cdot p_4 + p_2 \cdot p_3 + p_2 \cdot p_4 + p_3 \cdot p_4)^2 .$$
(10)

Ces équations (9, 10) ne renfermant pas la fonction impaire p' ne sont évidemment pas suffisantes pour que quatre arguments u_1 , u_2 , u_3 , u_4 , vérifient une équation de la forme proposée.

§ 2. — Une quartique particulière.

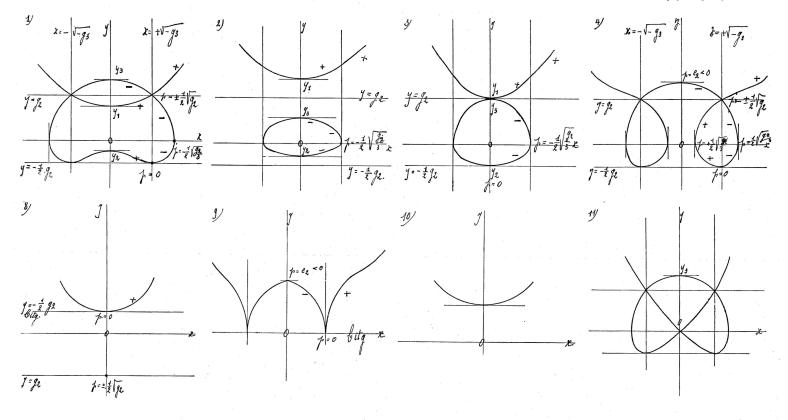
7. A partir de ce deuxième paragraphe les invariants g_2 , g_3 , des fonctions elliptiques employées seront supposés réels. Nous aurons bientôt à tenir compte du signe du discriminant de ces fonctions :

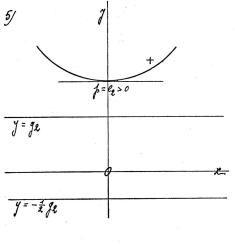
$$\Delta = g_2^3 - 27g_2^2 \ . \tag{11}$$

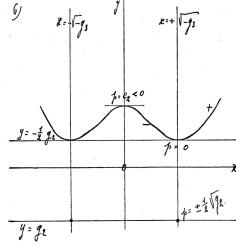
Nous allons étudier la courbe plane définie en coordonnées rectangulaires par les équations paramétriques :

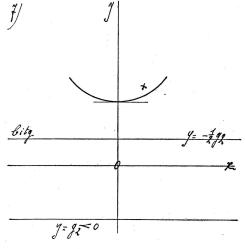
$$x = p'u , \qquad y = p''u . \tag{12}$$

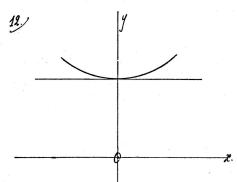
De ces deux équations, il résulte d'abord qu'une valeur de l'argument u détermine un seul point de la courbe, et que réciproquement, les points multiples éventuels étant exceptés, à tout point de la courbe ne répond qu'un seul argument (à part les valeurs homologues, bien entendu).

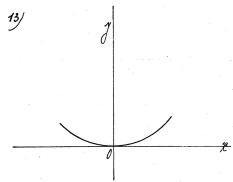


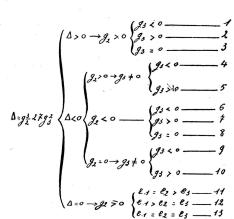












Les équations (12) peuvent s'écrire:

$$x^{2} = 4p^{3} - g_{2} \cdot p - g_{3} ,$$

$$y = 6p^{2} - \frac{1}{2}g_{2} ,$$
(13)

d'où l'on déduit directement :

$$2y \cdot p - 3x^2 = 2g_2 \cdot p + 3g_3$$
,

puis

$$pu = p = \frac{3(x^2 + g_3)}{2(y - g_2)}. \tag{14}$$

On transporte cette valeur dans la seconde des équations (13) et l'on obtient par des calculs faciles

$$(2y + g_2) \cdot (y - g_2)^2 = 27 \cdot (x^2 + g_3)^2 . \tag{15}$$

8. La courbe envisagée est donc une quartique binodale, ayant les deux points doubles :

$$y = g_2$$
, $x = \pm \sqrt{-g_3}$. (16)

Ces deux points doubles sont imaginaires ou réels suivant que l'invariant g_3 est positif ou négatif.

Quand le discriminant (11) s'évanouit, l'équation (15) montre que l'origine des coordonnées est un troisième point double, et la courbe est alors unicursale.

9. De l'équation cartésienne (15) ou des équations paramétriques (12) résulte la symétrie de notre quartique par rapport à l'axe des y. Semblablement, on aperçoit l'existence d'une direction asymptotique quadruple parallèle au même axe des y.

De la formule (14) on déduit aisément que la fonction pu reste réelle tout le long de la courbe, sauf peut-être aux points doubles, pour lesquels pu prend une valeur indéterminée, ainsi que l'égalité (14) et les relations (16) le rendent manifeste. Si pu devient effectivement imaginaire en un point double, celui-ci doit être un point isolé; car en tout point de la courbe, infiniment voisin d'un point crunodal ou cuspidal, la quantité pu prend une valeur réelle.

De la deuxième des formules (13), il résulte alors que l'ordonnée y admet le minimum — $\frac{1}{2}g_2$ corrrespondant à l'annulation de p.

De l'équation (15), on déduit encore l'existence d'une bitangente $\left(y = -\frac{1}{2}g_2\right)$ dont les points de contact ont mêmes abcisses $(\pm \sqrt{-g_3})$ que les points doubles. Voyez les formules (16).

De tout ce que l'on vient de développer on conclut que la courbe est située tout entière au dessus de sa bitangente, sauf qu'il se pourrait qu'il y eût exception pour des points doubles isolés.

Et c'est ce qui se passe effectivement quand l'invariant g_2 est négatif, puisque alors, en vertu de (16), l'ordonnée g_2 des points doubles est inférieure au minimum — $\frac{1}{2}g_2$ de y. L'hypothèse $g_2 < 0$ conduit en conséquence à des courbes (acnodales (fig. 6, 7, 8).

10. Des équations paramétriques (12) on tire cette relation

$$\frac{dy}{dx} = \frac{p'''u}{p''u} = \frac{12pu \cdot p'u}{p''u} , \qquad (17)$$

qui peut s'écrire:

$$\frac{dy}{dx} = \frac{12pu \cdot x}{y} . \tag{18}$$

Donc en tout point où la courbe rencontre l'un des axes coordonnés, la tangente est parallèle à l'autre axe.

Aux points où la quartique touche sa bitangente

$$\left(y = -\frac{1}{2}g_2, \quad \text{donc} \quad p = 0\right)$$

la tangente, qui est précisément cette bitangente elle-même, est parallèle à l'axe des x.

11. Pour déterminer la classe de la courbe, essayons de lui mener une tangente par un point quelconque (α, β) de son plan. Les arguments afférents aux points de contact seront les racines de l'équation

$$\beta - p''u = \frac{12pu \cdot p'u}{p''u} \cdot (\alpha - p'u) ,$$

qui résulte des formules (12, 17) et qui peut s'écrire :

$$(\beta - p''u) \cdot p''u + 12pu \cdot p'^{2}u = 12\alpha \cdot pu \cdot p'u . \tag{19}$$

On élève au carré, ce qui fournit visiblement une équation du huitième degré en pu. A chacune des racines de cette équation correspond, en vertu de (19), une et une seule valeur de p'u, puisque le premier membre de cette équation (19) est rationnel par rapport à pu.

La quartique envisagée est donc de huitième classe, ce qui doit être, d'ailleurs, d'après la théorie des caractéristiques plückériennes.

Et d'autre part cette propriété n'est qu'un simple cas particulier d'une proposition très générale: quand pour une certaine courbe les coordonnées ponctuelles sont exprimables en fonctions elliptiques d'un même argument, la classe de cette courbe est toujours double de son ordre. (Halphen, Traité des fonctions elliptiques et de leurs applications, deuxième volume, p. 415.)

Une restriction s'impose pourtant. Si l'invariant g_2 s'annule, la dérivée p''u devient égale à $6p^2u$, et les deux membres de l'équation (19) sont divisibles par pu. L'équation finale admettra donc la racine double: $p^2u = 0$. Les points de contact de la courbe avec sa bitangente sont alors des points de rebroussement, la quartique est bicuspidale, et sa classe tombe au nombre six. Et la formule (18) montre bien qu'en supposant à la fois pu = 0, y = 0, on rend indéterminé le coefficient angulaire $\frac{dy}{dx}$.

L'hypothèse $g_2 = 0$ conduit en conséquence à des courbes cuspidales (fig. 9, 10).

12. Pour en finir avec les généralités, nous allons procéder à la recherche directe des points doubles [7, 8].

Un point double étant un point par lequel la courbe passe deux fois, il faut qu'on ait

$$p'u = p'v$$
, $p''u = p''v$, (20)

sans que les arguments u, v soient homologues. La seconde équation entraı̂ne

$$p^2 u = p^2 v ;$$

mais il est impossible qu'on ait pu = pv, car cette égalité combinée à la première équation (20) conduirait à $u \equiv v$, et nous venons de dire que cela ne devait pas être. Donc:

$$pu = -pv$$
.

La première équation (20) devient alors:

ou
$$4p^3u - g_2 \cdot pu = 4p^3v - g_2 \cdot pv = -(4p^3u - g_2 \cdot pu) = 0 ,$$
$$pu(4p^2u - g_2) = 0 .$$

L'hypothèse pu=0 aurait pour conséquence pu=pv; elle est donc à rejeter. Il reste:

$$4p^2u-g_2=0,$$

c'est-à-dire:

$$pu = \pm \frac{1}{2} \sqrt{g_2} = -pv$$
 (21)

Les équations (12) donnent alors:

$$x = \pm \sqrt{-g_3}$$
 , $y = g_2$,

et, de cette manière, nous retrouvons bien les formules (16).

Si l'invariant g_2 est négatif, la quartique est biacnodale [9], et nous voyons qu'en des points doubles isolés, pu prend effectivement des valeurs imaginaires. Plus haut [9], nous avons énoncé déjà la réciproque de cette dernière proposition.

Si $g_2 = 0$, les deux valeurs (21) que pu prend en chaque point double se confondent, et ces points sont donc des rebroussements [11].

De la relation pu = -pv combinée à la formule (18) résulte cette propriété qu'en chacun des points doubles les deux tangentes ont des directions symétriques par rapport aux axes coordonnés.

- § 3. Les deux cas suivant le signe du discriminant.
- 13. Après toutes les considérations générales qui précèdent, nous allons distinguer deux cas principaux suivant que le discriminant

$$\Delta = g_2^3 - 27g_3^2$$