COURBURE GÉODÉSIQUE. LIGNES GÉODÉSIQUES

Autor(en): Tzénoff, Iv.

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 29 (1930)

Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE.

PDF erstellt am: **24.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-23251

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

COURBURE GÉODÉSIQUE. LIGNES GÉODÉSIQUES

PAR

Iv. Tzénoff (Sofia).

1. — Soient

$$x = f(q_1, q_2), \quad y = \varphi(q_1, q_2), \quad z = \psi(q_1, q_2)$$

les équations paramétriques d'une surface (S). On définira une courbe (C) de la surface en établissant une relation entre les coordonnées curvilignes q_1 et q_2 ; ou, ce qui revient au même, en exprimant q_1 , q_2 en fonction d'un même paramètre; nous prendrons l'arc s de la courbe pour ce paramètre.

Nous nous proposons de calculer d'une manière nouvelle la courbure géodésique et l'équation des lignes géodésiques.

Dans tout ce qui va suivre nous désignerons par x', y', ..., q'_2 les dérivées par rapport à s de x, y, ..., q_2 resp.

Considérons les fonctions

$$\begin{split} \mathbf{U}^2 &= x'^2 + y'^2 + z'^2 = f_1(q_1, \ q_2, \ q_1', \ q_2') = 1 \ , \\ \\ \mathbf{V}^2 &= x''^2 + y''^2 + z''^2 = f_2(q_1, \ q_2, \ q_1', \ q_2', \ q_1'', \ q_2'') \ . \end{split}$$

On a

$$\begin{cases} x' = \frac{\partial x}{\partial q_1} q_1' + \frac{\partial x}{\partial q_2} q_2', & y' = \dots, z' = \dots, \\ x'' = \frac{\partial x}{\partial q_1} q_1'' + \frac{\partial x}{\partial q_2} q_2'' + \frac{\partial^2 x}{\partial q_1^2} q_1'^2 + 2 \frac{\partial^2 x}{\partial q_1 \partial q_2} q_1' q_2' + \frac{\partial^2 x}{\partial q_2^2} q_2'^2, & y'' = \dots, z'' = \dots. \end{cases}$$
(1)

En tenant compte des formules classiques

$$E = \sum \left(\frac{\delta x}{\delta q_1}\right)^2, \quad F = \sum \frac{\delta x}{\delta q_1} \frac{\delta x}{\delta q_2}, \quad G = \sum \left(\frac{\delta x}{\delta q_2}\right)^2,$$

$$\sum \frac{\delta x}{\delta q_1} \frac{\delta^2 x}{\delta q_2^2} = \frac{1}{2} \frac{\delta E}{\delta q_1}, \quad \sum \frac{\delta x}{\delta q_1} \frac{\delta^2 x}{\delta q_1 \delta q_2} = \frac{1}{2} \frac{\delta E}{\delta q_2},$$

$$\sum \frac{\delta x}{\delta q_2} \frac{\delta^2 x}{\delta q_1 \delta q_2} = \frac{1}{2} \frac{\delta G}{\delta q_1}, \quad \sum \frac{\delta x}{\delta q_2} \frac{\delta^2 x}{\delta q_2^2} = \frac{1}{2} \frac{\delta G}{\delta q_2},$$

$$\sum \frac{\delta x}{\delta q_1} \frac{\delta^2 x}{\delta q_2^2} = \frac{\delta F}{\delta q_2} - \frac{1}{2} \frac{\delta G}{\delta q_1}, \quad \sum \frac{\delta x}{\delta q_2} \frac{\delta^2 x}{\delta q_2^2} = \frac{\delta F}{\delta q_1} - \frac{1}{2} \frac{\delta E}{\delta q_2},$$

pour les fonctions considérées on aura

$$U^{2} = Eq_{1}^{'2} + 2Fq_{1}'q_{2}' + Gq_{2}^{'2} = 1 , \qquad (2)$$

$$V^{2} = Eq_{1}^{''2} + 2Fq_{1}''q_{2}'' + Gq_{2}^{''2}$$

$$+ 2q_{1}'' \left[E'q_{1}' + F'q_{2}' - \frac{1}{2} \left(\frac{\partial E}{\partial q_{1}} q_{1}^{'2} + 2 \frac{\partial F}{\partial q_{1}} q_{1}' q_{2}' + \frac{\partial G}{\partial q_{1}} q_{2}^{'2} \right) \right]$$

$$+ 2q_{2}'' \left[F'q_{1}' + G'q_{2}' - \frac{1}{2} \left(\frac{\partial E}{\partial q_{2}} q_{1}^{'2} + 2 \frac{\partial F}{\partial q_{2}} q_{1}' q_{2}' + \frac{\partial G}{\partial q_{2}} q_{2}^{'2} \right) \right] + \dots$$

$$(3)$$

Considérons un vecteur $\vec{\mathbf{U}}$ de grandeur un dirigé suivant la tangente de la courbe (C) et un autre vecteur $\vec{\mathbf{V}}$ de grandeur $\frac{1}{\rho}$, dirigé suivant la normale principale de (C). Le produit scalaire du vecteur $\vec{\mathbf{V}}$ et du vecteur $\vec{\delta s}(\delta x, \delta y, \delta z)$ [représentant le déplacement infinitésimal du point M (x, y, z) obtenu en donnant aux q_1 , q_2 des variations infiniment petites δq_1 , δq_2] est donné par la relation

$$\begin{split} \operatorname{V}\delta s \cos \left(\operatorname{V} , \ \delta s \right) &= x'' \delta x + y'' \delta y + z'' \delta z \\ &= \left(x'' \frac{\delta x}{\delta q_1} + y'' \frac{\delta y}{\delta q_1} + z'' \frac{\delta z}{\delta q_1} \right) \delta q_1 + \left(x'' \frac{\delta x}{\delta q_2} + y'' \frac{\delta y}{\delta q_2} + z'' \frac{\delta z}{\delta q_2} \right) \delta q_2 \ , \end{split}$$

ou, en vertu des équations (1),

$$V\delta s \cos (V, \delta s) = \left(x'' \frac{\delta x''}{\delta q_1''} + y'' \frac{\delta y''}{\delta q_1''} + z'' \frac{\delta z''}{\delta q_1''}\right) \delta q_1$$

$$+ \left(x'' \frac{\delta x''}{\delta q_2''} + y'' \frac{\delta y''}{\delta q_2''} + z'' \frac{\delta z''}{\delta q_2''}\right) \delta q_2 = \frac{1}{2} \left(\frac{\delta V^2}{\delta q_1''} \delta q_1 + \frac{\delta V^2}{\delta q_2''} \delta q_2\right); \quad (4)$$

V² doit être remplacé par sa valeur (3).

Désignons par θ l'angle que fait la normale principale de la courbe (C) avec la normale de la surface (S) et appliquons la formule générale (4) au déplacement $\Im s$, perpendiculaire au vecteur $\mathring{\mathbf{U}}$. On aura

$$rac{\sin\,\theta}{
ho}\,\delta s \,=\,rac{1}{2}igg(rac{\delta\,\mathrm{V}^2}{\delta\,q_{_{_{\boldsymbol{1}}}}''}\delta q_{_{\boldsymbol{1}}} + rac{\delta\,\mathrm{V}^2}{\delta\,q_{_{_{\boldsymbol{2}}}}''}\delta\,q_{_{\boldsymbol{2}}}igg)$$

et la courbure géodésique est donnée par la formule

$$\frac{1}{\rho_g} = \frac{\sin \theta}{\rho} = \frac{1}{2} \left(\frac{\delta V^2}{\delta q_1''} \frac{\delta q_1}{\delta s} + \frac{\delta V^2}{\delta q_2''} \frac{\delta q_2}{\delta s} \right) . \tag{5}$$

Des équations

$$\mathrm{E}\left(\frac{\delta\,q_{1}}{\delta\,s}\right)^{2}+\,2\mathrm{F}\,\frac{\delta\,q_{1}}{\delta\,s}\,\frac{\delta\,q_{2}}{\delta\,s}+\,\mathrm{G}\left(\frac{\delta\,q_{2}}{\delta\,s}\right)^{2}\!=\,1$$

et

$${\rm E}q_{_{\bf 1}}^{'}\delta q_{_{\bf 1}} + {\rm F}(q_{_{\bf 1}}^{'}\delta q_{_{\bf 2}} + q_{_{\bf 2}}^{'}\delta q_{_{\bf 1}}) + {\rm G}q_{_{\bf 2}}^{'}\delta q_{_{\bf 2}} = 0 \ .$$

[qui expriment que le déplacement δs est effectué sur la surface et qu'il est perpendiculaire au vecteur $\vec{\mathbf{U}}(x',y',z')$], on tire facilement

$$\frac{\delta q_1}{\delta s} = -\frac{Fq_1' + Gq_2'}{\sqrt{EG - F^2}} = -\frac{1}{2\sqrt{EG - F^2}} \frac{\delta U^2}{\delta q_2'},$$

$$\frac{\delta q_2}{\delta s} = \frac{Eq_1' + Fq_2'}{\sqrt{EG - F^2}} = \frac{1}{2\sqrt{EG - F^2}} \frac{\delta U^2}{\delta q_1'}.$$

Par conséquent,

$$\frac{1}{\rho_g} = \frac{1}{4\sqrt{EG - F^2}} \begin{vmatrix} \frac{\delta U^2}{\delta q_1'} & \frac{\delta V^2}{\delta q_1''} \\ \frac{\delta U^2}{\delta q_2'} & \frac{\delta V^2}{\delta q_2''} \end{vmatrix}.$$
 (6)

2. — Pour obtenir les lignes géodésiques de la surface, il faut exprimer que la courbure géodésique est nulle, ce qui donne l'équation

$$\frac{\partial V^2}{\partial q_1''} \frac{\partial U^2}{\partial q_2'} - \frac{\partial V^2}{\partial q_2''} \frac{\partial U^2}{\partial q_1'} = 0 . \tag{7}$$

Les deux quantités $\frac{\delta V^2}{\delta q_1''}$, $\frac{\delta V^2}{\delta q_2''}$ sont liées par l'identité

$$\frac{\partial V^2}{\partial q_1''} q_1' + \frac{\partial V^2}{\partial q_2''} q_2' = 0 . \tag{8}$$

On peut établir cette identité de la manière suivante. On a

$$\frac{1}{2} \frac{\partial V^{2}}{\partial q_{1}''} = x'' \frac{\partial x''}{\partial q_{1}''} + y'' \frac{\partial y''}{\partial q_{1}''} + z'' \frac{\partial z''}{\partial q_{1}''} = x'' \frac{\partial x}{\partial q_{1}} + y'' \frac{\partial y}{\partial q_{1}} + z'' \frac{\partial z}{\partial q_{1}},$$

$$\frac{1}{2} \frac{\partial V^{2}}{\partial q_{2}''} = x'' \frac{\partial x''}{\partial q_{2}''} + y'' \frac{\partial y''}{\partial q_{2}''} + z'' \frac{\partial z''}{\partial q_{2}''} = x'' \frac{\partial x}{\partial q_{2}} + y'' \frac{\partial y}{\partial q_{2}} + z'' \frac{\partial z}{\partial q_{2}}.$$

Multiplions par $q_{_{\mathbf{1}}}',\ q_{_{\mathbf{2}}}'$ les deux équations et ajoutons-les. On aura

$$\begin{split} \frac{1}{2} \left(\frac{\delta V^2}{\delta q_1''} q_1' + \frac{\delta V^2}{\delta q_2''} q_2' \right) &= x'' \left(\frac{\delta x}{\delta q_1} q_1' + \frac{\delta x}{\delta q_2} q_2' \right) \\ &+ \dots = x'' x' + y'' y' + z'' z' = \frac{1}{2} \frac{d U^2}{d s} = 0 \end{split} .$$

Des relations (7) et (8) on tire

$$\frac{\delta V^2}{\delta q_1''} = 0 , \qquad \frac{\delta V^2}{\delta q_2''} = 0 .$$
 (9)

ou bien, en tenant compte de (3),

$$\begin{cases} \frac{d}{ds} \left(\mathbf{E} q_{1}^{'} + \mathbf{F} q_{2}^{'} \right) - \frac{1}{2} \left(\frac{\delta \mathbf{E}}{\delta q_{1}} q_{1}^{'2} + 2 \frac{\delta \mathbf{F}}{\delta q_{1}} q_{1}^{'} q_{2}^{'} + \frac{\delta \mathbf{G}}{\delta q_{1}} q_{2}^{'2} \right) = 0 , \\ \frac{d}{ds} \left(\mathbf{F} q_{1}^{'} + \mathbf{G} q_{2}^{'} \right) - \frac{1}{2} \left(\frac{\delta \mathbf{E}}{\delta q_{2}} q_{1}^{'2} + 2 \frac{\delta \mathbf{F}}{\delta q_{2}} q_{1}^{'} q_{2}^{'} + \frac{\delta \mathbf{G}}{\delta q_{2}} q_{2}^{'2} \right) = 0 . \end{cases}$$
 (9')

Ces deux équations différentielles des lignes géodésiques. Ces deux équations rentrent d'ailleurs l'une dans l'autre moyennant la relation

$$U^{2} = E q_{1}^{'2} + 2 F q_{1}^{'} q_{2}^{'} + G q_{2}^{'2} = 1 ,$$

¹ On sait que les lignes géodésiques d'une surface sont les trajectoires d'un point matériel qui n'est sollicité par aucune force. Les équations du mouvement sous la forme donnée par M. P. Appell [*Mécan. rat.*, t. II, § 465, IV^e éd.] coïncident avec les équations (9).

qui permet d'éliminer ds de l'une ou de l'autre, par exemple de $\frac{\delta V^2}{\delta q_1''} = 0$. L'équation obtenue est une équation différentielle du

second ordre entre q_1 et q_2 . Son intégration conduit à la relation $q_2 = f(q_1)$ qui définit les lignes géodésiques de la surface (S).

Nous avons donc montré que la recherche des lignes géodésiques se ramène au problème d'Analyse suivant: trouver le minimum de la courbure $V=\frac{1}{\rho}$, considérée comme fonction explicite de deux variables indépendantes q_1'' , q_2'' (les dérivées secondes par rapport à l'arc s des deux coordonnées curvilignes q_1, q_2).

3. — Nous allons faire une application de la méthode précédente à la recherche des lignes géodésiques des surfaces de révolution:

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = \varphi(r)$.

On trouve

$$V^{2} = x''^{2} + y''^{2} + z''^{2} = r''^{2}(1 + \varphi'^{2}) + \theta''^{2}r^{2} - 2r''(\theta'^{2}r - \varphi'\varphi''r'^{2}) + 4rr'\theta'\theta'' + \dots$$

Alors les équations des lignes géodésiques sont:

$$rac{1}{2}rac{\delta\,{
m V}^2}{\delta\,{ heta''}}=\,{ heta''}\,\,r^2\,+\,2\,{ heta'}\,rr'$$
 ; ou bien $rac{d}{ds}(r^2{ heta'})=0$, $rac{1}{2}rac{\delta\,{
m V}^2}{\delta\,r''}=\,r''\,(1\,+\,{\phi'}^2)\,-\,{ heta'}^2\,.\,r\,+\,{\phi'}\,{\phi''}\,r^2\,=\,0$,

auxquelles il faut joindre l'équation

$$U^{2} = 1 = x'^{2} + y'^{2} + z'^{2} = r'^{2}(1 + \varphi'^{2}) + r^{2}\theta'^{2}.$$

En éliminant ds des équations

$$r^2 rac{d\, heta}{ds} = C \; ,$$
 $(1+arphi'^2)\left(rac{d\,r}{ds}
ight)^2 + \, r^2 \left(rac{d\, heta}{ds}
ight)^2 = 1 \; .$

on obtient l'équation différentielle de la projection des lignes géodésiques sur le plan Oxy

$$d\theta = \pm \frac{dr}{r} \sqrt{\frac{1 + \varphi'^2}{\frac{r^2}{c^2} - 1}}$$

4. — Nous écrirons de même l'équation différentielle des lignes géodésiques en coordonnées rectangulaires. Soit

$$z = f(x, y)$$

l'équation de la surface (S). On a (avec les notations classiques)

$$z' = px' + qy'$$
, $z'' = px'' + qy'' + rx'^2 + 2sx'y' + ty'^2$.

Par conséquent

$$U^2 = (1 + p^2) x'^2 + 2 pqx'y' + (1 + q^2) y'^2$$
,

$$\begin{split} \mathbf{V}^2 &= (1 + p^2) \, x''^2 + 2 \, p q x'' y'' + (1 + q^2) \, y''^2 \\ &+ 2 \, x'' \, p (r x'^2 + 2 \, s x' y' + t y'^2) + 2 \, y'' \, q \, (r x'^2 + 2 \, s x' y' + t y'^2) + \dots \end{split}$$

Les équations différentielles des lignes géodésiques sont

$$\begin{cases}
\frac{1}{2} \frac{\delta V^{2}}{\delta x''} = (1 + p^{2})x'' + pqy'' + p(rx'^{2} + 2sx'y' + ty'^{2}) = 0, \\
\frac{1}{2} \frac{\delta V^{2}}{\delta y''} = (1 + q^{2})y'' + pqx'' + q(rx'^{2} + 2sx'y' + ty'^{2}) = 0.
\end{cases} (10)$$

Il suffit d'éliminer ds des équations (10). En posant pour abréger

$$rx'^2 + 2sx'y' + ty'^2 = m$$
,

on tire des équations (10)

$$x'' = -\frac{mp}{1+p^2+q^2}$$
, $y'' = -\frac{mq}{1+p^2+q^2}$.

En portant ces valeurs dans l'équation

$$\frac{d^2y}{dx^2} = \frac{x'y'' - y'x''}{x'^3} ,$$

on obtient finalement

$$\frac{d^2y}{dx^2} = \left(q - p\frac{dy}{dx}\right) \frac{r + 2s\frac{dy}{dx} + t\left(\frac{dy}{dx}\right)^2}{1 + p^2 + q^2} \ .$$