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ON CERTAIN ARITHMETICAL FUNCTIONS
| RELATED TO A
NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONY

by M. A. Basoco, Lincoln

(Recu le 21 mars 1957)

1. INTRODUCTION.

In a recent paper, vax pER PoL [1] has made an extensive
study of the elliptic modular functions defined by:

> D) (m + nr) 2k
(1) th—l (t) - e n=;°° , ’ k = 27 37 47 57
2 m—?k
m=—ow

where — t = 2nit, Imt > 0; m, n range over all integral values
and (m, n) % (0, 0). Hurwrrz [2] and vAN DER PoL [1] have
shown by different methods that these functions have series
representations of the form

& (— 1)’; © k- ol hk(—1)F <

n
=1+ eMs,, (n),
P B, 2 oo

(2) agpy (t) =1 +

where o, (n) is the sum of the (2k — 1)-st powers of the inte-
gral divisors of n, and B, are the Bernoulh numbers. These
functions are closely related to the coefficients in the series
development of the Weierstrass function P (u), and may be
found tabulated in vAN DER PoL’s paper [1] as well as in a paper
by Ramanusan [3] who uses a different notation.

1) This paper was prepared while the author held a Faculty Research Fellowship
during the summer of 1956, granted by the University of Nebraska Research Council.
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The integers (m, n) in (1) are unrestricted as to parity, and
it is of some interest to consider the three sequences of functions
for which the corresponding defining double sum is restricted
by the conditions that

(m, n) = (0,1), (1,0) or (1,1), mod 2.

These functions are defined respectively, for k£ > 1, by

(4)  For ”—ChEZ + v

(W) (v) (u =

O ’ ? ") i

v= 4+ 1, —l_ y =B 57 "‘) I;

(5)  Kor (1) = Gy Z z + pr) |
() ) |

6)  Pory (1) = Cp D, (z, e +or)*, (p,o= &1, £3, £35, ..).
(e) (o)

where,

a  =1*B, L (=) 2k—1)!
(1) C D w¥=V,, V,= — Cp = 92R+1 2K
(w)

Written in arithmetical form these functions will be shown
to have the form:

*® n?k—1 e—nt/2 e t/ i
(4); Wopy (1) = Z i 2 e "2 By (n)
n=t 1—e n=1
* ( 1)” nak-1 et ® ~
(5)  Xopy () = Uy + D) P Up + DV ey (n)
n=1 n={
© 1)k p2R bl )
B Oyl = DU g
n=| 4
where,
(8) Bogy (n) = sum of the (2k — 1) st powers of the integral divisors
of n whose conjugates are odd.
(9) Copy (n) = (sum of the (2k — 1) st powers of the even divisors

of n) — (sum of the (2k — 1) — st powers of the odd
divisors of n).

(10) &, (n) = (sum of the (2k — 1) st powers of the even divisors of

n whose conjugates are odd) — (sum of the (2k — 1) — st
powers of the odd divisors of n whose conjugates are odd);

L’Enseignement mathém., t. IV, fasc. 1. 3
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(11) - U, = 2% — 1)V, = (— 1)k 2% — 1) f_]’: .

As is well known, the double series occurring in (1), (4), (5),
(6) are absolutely convergent for k> 1; for k = 1, the conver-
gence is conditional. However, as has been shown by Hur-
wiTz [2] in the case of (1), if the summation is first carried out
with respect to m and then with respect to 7, the resulting sum
agrees with (2) with & = 1. For this case (k¥ = 1) similar
conditions hold for (4), (5) and (6). These matters are of relev-
ance In studying certain modular transformations of these
functions to be discussed later.

2. UMBRAL RELATIONS.

The functions defined in what precedes arise in a natural
manner as a consequence of the well-known fact that the Jacobi
theta functions are solutions of the partial differential equation
(12) g—zz_——Qg—f, z=10.(0,7), (r=1,2,3,4),
with s = 270 and — ¢ = 2nit, and, what appears to be less well-
known, that the functions u = Inf, (v, t) satisfy the non-linear
equation:

02y ou ou\2
(13) TS?_QEZ—“<TS> '

Here, the notation for the theta function is that used in TAN-
NERY-MoLKk’s treatise [4]. '

The arithmetical consequence of (13) can best be obtained
through the use of the infinite product representation of 6. (¢, 1).
It is found that the calculations needed are greatly facilitated
and the results obtained very simply expressed in a symbolic
form through an application of the umbral calculus of BLissARD
and Lucas [5]. It is not feasible to give details for all cases
and we merely indicate briefly the nature of the calculations
for the case r = 4. Thus, since,

T ———
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(14) 64 (9, "C') = QO II (1 — qgnfi eQTfi’U) (1 . q2n—1 e—?‘n:iv) :
n=1 :

and taking into account the change in variables from (¢, 7) to
(s, t) it is found that if u (s, ) = In 04 (¢, 7), then

d - no _
(15) ‘a%:zgquansm'w, g=c¢el,
n=1 "+
and
%u - ng" _
(16) 5_92:221____271005715’
n=1 g
moreover,
) > n 0 - m cos
(17) '5%:__1 nqzn_2&{21q2n nnS}
amtl—4 n=11 4

provided Ret + 2Im s> 0 in (15), (16) and (17).
Now, in (15) replace sin ns by its power series development
and interchange the order of summation to obtain

(15), ? =2> (— 1)k (2,(%1), Fopy (1)

Hence if ¥ is the umbra of the sequence {¥,,, (t)} we may
write symbolically:
ou 0%u

(18) — & 25in ¥s — 2 2 ¥ cos s .
0s?

»

Similarly, a more extended calculation shows that

ou
ot

1 — cos ¥s

(19) -

~ ) 490
= P 42 ot

In (18) and (19), in order to pass from symbolic equality to
actual equality, the functions sin ¥'s, cos ¥ s and (1 — cos ¥ 5)/¥"
are to be expanded in powers of s and then the exponents in the
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powers of ¥ are lowered into subscripts; thus ¥® would then
be written ¥, (¢).

If (18) and (19) are substituted in (13), there results the
following umbral identity: '

(20) Y (1 — cos ¥s) + 2

2 1 — cos ¥s
ot ¥

>=25in‘Fs*sin‘P’s,

where the asterisk (*) indicates umbral multiplication.

For the cases r = 2, 3, rather extensive calculations show
that umbral identities of the same form exist. We may there-
fore state the following result which is implied by the non-linear
equation (13).

Theorem 1: “Let ¥, X, ® be respectively the umbrae of the
sequences { ¥y, (1) }, { Xgpy (1) }, and { @y, (1) }. If v is one of
these umbrae, then the following umbral identity holds:

0 (1 — COs Ys’

(21) v (1 —cos vs) + 2 T > > = 2 sin+ys * sin ys .

3. RECURRENCES.

It is clear that (20) implies a recurrence relation for the funec-
tions W (f), and indeed, Theorem 1 yields the following.

Theorem 2: “Let v, (1) be W} (2), X; (f) or @; (t); then the
following recurrence holds: :

n-1 |

d 1 2
(22) o= Yot ) + 5 Yonu () = D) <2k j_ 1) Yoret (&) Yon-gn-1 (8) 5
k=0 ,_

and hence vy,, 4 (¢) 1s a polynomial in v, (¢) and its derivatives up
to order n.”

This result, in turn, implies the following

Theorem 3: “Let pq, 4 (n) be either of the arithmetical func
tions By, (r) or &4 (n) defined by (8) and (10) respectively;
then g, , (n) satisfies a recurrence relation of the form:

e S
(28)  Pgpey (1) — mpguy () = 2 > Z (23 i ,1)92s+1 (7) Pop-gst (n — J),

s=0 j=1

et e e ceom e e -

—



CERTAIN ARITHMETICAL FUNCTIONS 37

for all » and k> 1. Moreover, the arithmetical function
Copq (n) defined by (9) satisfies the recurrence

Céhn (n) —2n Copy (n) = 2 Z ( ) { Uy Cogq (n) +
(24)

+ Usiy Sopge (7)) F 2 Sose1 1) Sopgsg (0 —1J) }

where U, 1s defined by (11) and », £ > 1.”
Incidentally, the comparison of coefficients which y1e]ds (24)
also gives:

(25) 22<2k+ > Upy Uy, 21,

which is equivalent to a result given by NierLsen [7].
Finally, the case r = 1, has been discussed by vaAx pEr PoL
[1] who finds an expression analogous to (22) as follows:

d, 2n & 3 2n + 3, oo
(26) = hoyyg (1) + in 13 "ann (1) = };0 (2k 4 1) hopat (&) hop gy (1), 21,
where,
(—1)"B,
(27) hgn_1 (1) = ~ an Xon-1 (t) ,

%y, (f) being defined by (2).
We find the analogue of (24) for this case to be:

h—1
2k + 3 2k
2k 4+ 1 Ognet (R) — Inogyy (n) = 2 (23 + '1) { Vios Osnt () +
(28) 5—0
n~1
+ Vs+1 Cokr—2s-1 (n) + Gos+1 (]) Cor—2s—1 (n — ]) } s,y n=1.
j=1

Corresponding to (25), we find

4n o |
(29) Vit — on Z <2k " ) ot Vo s
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which is equivalent to a known recurrence for the BERNOULLI
numbers [8].

4. TrE Funcrions W, (1), Xguy (2), Dopy (2)
AS DouBLE Suwms.

The results which are stated as (4), (5), (6) follow readily
from (1) and (2) which are known to be equivalent (see [1], [2]).
It 1s to be observed first that a comparison of (4) and (5) with
(1) taking into account (27) gives the relations:

(30)  Wopy (1) = hopy (8/2) — hopy (1) = Vi (cgpq (1/2) — 2954 () »

(81)  Xgpy (8) = 2% hop_y (20) — hgyy (1) = V, (2% g4 (20) — gy, (1))
From (4) and (6) we also have,

(32) Doy 4 (1) = 2% Wy, | (2) — WPy, (1) -

By (30), we may write
(33) Dy y (1) = — V, (0tgy (8/2) — (2%F + 1) gy (1) + 2% gy (22)) .

Thus, our functions (4), (5), (6) are expressed in terms of ay,_, (u).
These relations in conjunction with (1) and (2) identify them
- with (4),, (5);, and (6); respectively.

It is of interest to note that (31) with £ = 2 permits, with
the aid of a result of van pERr Por [1], the deduction of Jacobi’s
famous theorem on the number of representations rg (n) of the
integer n as the sum of eight squares. Thus, ]

(34) 240 X, () = 16 o (20) — ag (1) = 15 6 (0, ¢)

where ¢ = exp (—t). Hence,

05 (0,q) = 16X,(t) =1+ 16 > ¢" L (n) ,
n=1
and

65 (0, g) =1 416 > (—1)"¢" % (n) .
n=1
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This result implies that
(35)  re(n) = 16 (— 1) Ly (n) = 16 (— 1) (o () — o (n)

where o° (n) denotes the sum of the third powers of the odd
divisors of 7, and ¢¢ (n) denotes the sum of the third powers of
the even divisors of n. This is the desired result. [8]

5. MopuLAR TRANSFORMS.

It has been shown in [2] that for k> 1, the function oy, (f)
satisfies the modular transformation

Nk
( zhi) gy (271) -

(36) t* ag, y (2mE) =

For k — 1, the conditional convergence of the double series in
(1) creates difficulties [9], which however, have been resolved
by Hurwirz [3], who gives a result equivalent, in our notation,
to the formula

(37) oy (27) :—%al @nft) +

Al

We find that this result may be proved very easily by using (36)
in conjunction with the relation

(38) o () = og (1) + o (t) et (2)

which is the case n = 2 in (26).

With the aid of equations (30), (31) and (33), the transforms
(36) and (37) yield those for our functions (4);, (5); and (6);.
It is found that under the modular transformation in question,
the first two functions are reciprocal in the sense that,

R (— 1)F
(39) t ‘P‘%‘_1 [Zrt) = 7 Xop-y (27/t) , k=1.

The remaining function (6), transforms in a manner analogous
to aq,, (?), namely

(="
i Qopy 27/t) , kK >1,
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whilé for & = 1, the following holds:

1 1
(41) t®, (2mt) = _T(I)l (2me) — —

Finally, we note that for ¢ = 1, (37) and (41) yield rapidly
convergent series which are of interest, namely,

(42) 8 D et (n) = Y —1/n
n=1

(43) 8 > ™ (n) = —1/n .
n=1

These, 1n combination, give finally,

e™o, (n) = 2/3 — 1/n

M s

(44) | 8

I
[

n

where o] (r) is the sum of the odd divisors of n.
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