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THE POSSIBLE TRANSFORMATIONS OF A REAL

CURVE INTO A CURVE WITH REAL EQUATION
AND PASSING THROUGH THE ISOTROPIC POINTS

by H. G. Green and L. E. Prior, Nottingham (England)

(Reçu le 3 mai 1958.)

1. The first problem of this paper is to investigate the possibility

of transforming a curve, expressible as a function with real
coefficients of the variables, into a second curve expressible by
an equation in cartesian coordinates with real coefficients and
such that two real points on the curve become the isotropic
points. It should be noted that any real transformation of the
coordinate system will not affect the reality of the equation of
a curve.

Let A and B be two real points on such a curve, and suppose
f (x, y, z) 0 is the equation of the curve referred to a real
triangle of reference XYZ where X, Y are harmonic conjugates
with respect to A, B. The lines ZA, ZB are then given by
y ± 0, where X is some real constant. It is easy to show
that if the equations of ZA, ZB are to become iy ± x 0, the

necessary transform is equivalent to that in which x is replaced
by x, y by Xiy and z by iz, where the triangle of reference remains
unchanged. X and real points on YZ are the only points
which remain real, and the only real lines which remain real
are YZ and those through X. If we then replace z by unity,
ZA and ZB become isotropic lines, iy x 0, in a cartesian
field with real rectangular axes ZX, ZY. A and B are now the
isotropic points in this field.

Suppose that in the original field we have a non-degenerate
curve of degree N with real coefficients and of the form

(X, y, z) ^ (U0x* + U2x^2 + U,x^ + + (U\ xN~l +
+ £/3zn-3 + U5 £n~5 + 0
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where Ur is homogeneous of degree r in y and z. After the
first transform the curve has equation

(U0xN -j- I (iq^"* W3£N~3 -f-

+ u5xN~b — 0

where ur is homogeneous of degree r in y and 2 and with real
coefficients. Henca, if the curve is to transform finally into
one through the isotropic points and whose equation has real
coefficients, the equation must initially have the form when
N 2n

U0x2n+ U2x2n~2+ + 0
> W

and when N 2n + I
Uxx2n+ U3x2n~2+ + t + 0 (2)

In the first case all the odd polar curves with respect to X
have rr.as a factor, with YZ as the polar line of X. In the
second case the curve passes through X, which is an inflexion:
the odd polar curves with respect to X have x as a factor
(corresponding to the line YZ), the remaining part of the (2n — l)th.
polar being the inflexional tangent U1 0. We will refer to
YZ as the conjugate line of X in each case. If the curve has a

multiple point of order k at X, its equation if of the form

c^+tW^ + .-.+ tV-o,
with N — k even. The (k + l)th. polar curve of Xis Ukx — 0,

that is the tangents at the multiple point (of necessity inflexional)
and the conjugate line.

• Rewriting the equations in descending powers of z, we have

V0z2n + V1z2n'1+ + Vrz2n~r + + 0 (3)

or
V0z2n+l + V1z2n+ + Vrz2n-r+l + + V2n+l 0 (4)

where Vr is homogeneous of degree r in x and y. Since only
even powers of x occur it follows that Vr is of the form

r/2

n (asx2 + bsy2) when r is even,
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or
r/2

y II K x2 + bsy2) when r is odd.
1

Hence the set of points on X 7, other than X, given by any
Vr 0 form an involution with X, F as double points. In
particular the points of intersection of the curve with 17,
given by FN 0, have the same property. The expression of
y2 — X2 x2 on which the transformation was based will be a

factor of FN, that is one at least of the expressions as/bs is

negative, and A, B are any pair of points corresponding to such

a factor as x2 + bs y2. It follows that any curve with real

equation which satisfies these conditions can be transformed
into a circular curve with real equation.

2. Consider the intersections of any curve of this type with
the line py + qz 0, joining X to any point P on YZ. Their
joins to Z are given by an equation of the same form as FN 0,
and hence the intersections, other than X, form an involution
with X and P as the double points. It follows at once that if P
is a 2k + 1 pie point on the curve XP is a tangent to one of the
branches. We shall refer to any real point having the properties
of X with respect to the curve as a pole. We have now shown

that, given a pole, any real point on the curve and its mate in
the involution cut on the line joining the point to the pole can
be transformed into the isotropic points, giving a circular curve
whose equation has real coefficients.

If Vr occurs in the equation of the curve, the equation of
the (N — r)th. polar curve with respect to Z is of the same
form as (3), (4): if Vr does not occur the equation of the
(N — r)th. polar curve with respect to Z contains z to some

power as a factor and the remaining part is of the same form
as (3, 4). X is therefore a pole of the (N — r)th. polar curve
of Z or of the remaining part of it, as the case maybe, where Z
is any point on the conjugate line of X. Hence since the first
polar curve of Z passes once through each node and not, in
general through a point of contact of a tangent from X, a node
and such a point of contact cannot be paired together, and
similarly for other singularities. The case of two nodes collinear
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with X in which one of them only has IFasa tangent similarly
cannot arise. The two points which are to become the isotropic
points must therefore be of exactly similar type. Further any
isolated singularity must be at X or on YZ.

It should be noticed that in the case of a curve of even degree
containing only even powers of 2 a pole at X implies also poles
at Y and Z.

3. The second problem is to discuss the possibility of a second

pole not on YZ. From the preceding results it follows that the
form of the equation of the curve having a pole at X is unaltered
if the triangle of reference is defined by X and any two real
points on YZ. If the curve has a second pole X± not on FZ,
we can therefore take it as lying on IF with Z the common
point of the conjugate lines of X and Xv The intersection of
these lines cannot be at Y since in that case X, Y and Xlf Y
would be double points of two involutions among the same

points (projecting Y to infinity, X and Xx would both become
the mean centre of the same points). The conjugate lines of X
and Xx are therefore distinct and lead to a definite point of
intersection Z.

It follows at once that the points X and X1 are poles for
all polar curves with respect to Z of the initial curve and lie on
all such curves of odd degree. The points of intersection of
Vr 0 with XY for any value of r (but excluding X if r is

odd) may therefore be paired as an involution having X as a

double point (the other double point being Y) or, alternatively
excluding X1 if r is odd they may be paired as an involution
having X1 as a double point. In this case the second double

point is the intersection, Fi, of the conjugate line of Xx with XY.
Further, since a real point cannot be paired with an imaginary
point in any involution with real double points, nor can a point
of simple intersection be paired with one of multiple intersection,
the various-types of points must be grouped together to form
sub-groups. Each sub-group must separately form involutions
with X, Y and X1? Y± as double points. The expression leading to
a sub-group of s points will be denoted by es having the same form
as Vs and

Vr s= cs. vt where r «=* $ + t + •
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in which some of s7t7 may be equal. The existence of a

second pair of double points Xl7 Y1 entails further restriction

on the form of cr.

Project Y to infinity and pairs of points on XT given by

çr 0 become symmetric with respect to X.

Taking r 2p + l, X^isa point of vr and since there must
be p points between Xx and Yl7 X must separate Xx and Yv

j Taking r 2p (p > 1), X divides the points into two equal

groups (a) and (ß) and Xl7 Y1 are the double points of an invo-
I lution among (a) + (ß) in some order. If Xx and Xj_ are not
\ separated by X, let them be on the side of the group (a). Since

I there must be p points of between Xx and Yl7 they must be
5 the points (a). The harmonic conjugates with respect to Xl7
I Y± of an ordered set of points from Xx to Y1 are external to

Xx Yx and in the reverse order, that is they are the set (ß).

Any point of-(a) is therefore paired with the same point of (ß)
in both involutions and therefore the premise is incorrect and
X must separate Xx and Yv Let one of the intersections of
the perpendicular to XT at X with the circle on X1 Y± as
diameter be y. Since X is between X1 and Y± this point is real.
Draw any circle through y with its centre, 0, on the normal Xy

y

FIGURE
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produced through y, and meeting the normal again in x. Denote

any point of the involution by Pt where 21 —1,21 are the suffixes
of a pair of the involution with double points X and Y. In the
odd degree case X is itself a point of vr 0 and may then be

denoted by P0. Projecting from y as vertex on to the circle
points Pt will give points pt which form corresponding involutions

on the circle. The centre of the involution on the circle
corresponding to the involution with X, Y as double points is Y

at infinity. Xx, Y± become points yx at the ends of a
diameter of the circle, and therefore the centre of this involution is

at infinity in the direction perpendicular to xx yx, and the joins
of pairs of points of the second involution on the circle must be

parallel to this direction. Let the angle between the directions
of the two centres of involution which equals yOxx be ß. Let
ypt subtend the angle 0t at the centre of the circle.

(i) Even degree, v2r (r > 1).

From the involution on the circle formed by the parallel
chords through Y

01 -f 02 o (mod 2tu)

Ö3 + 04 0 (m0(i 27r)

02r_l + 02r 0 (mod 2tc) (5)

and adding

2 % 0 (mo(* 27r) •

1

Pairing for the involution defined by the double points X± and Yx

we have similarly, from parallel chords, r equations

0t + 0£, 2ß (mod 27r) (6)

in which £, t' take the values 1, 2, 3, 2r (t ^ t'). Hence

2 s iz s iz

where s can take any one of the values 1 to r — 1.

If pt is the mate of pt in the first involution and of pm in
the second, we have
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0j -f 0f 0 (mod 2tt) 0m + 0£ 2ß (mod 2iz)

2ß (m0(i 27r' '

and the angle between ypm and ypt is the constant ß of the
second involution. Since ß can take r — 1 values, it follows

that if there are two involutions among the 2r points, there

are r involutions.
The argument used to prove that X separates Xu Y1 also

demonstrates that between any two successive points of e2r

there cannot be more than one double point (X or Y) of the

possible hyperbolic involutions. Hence the r involutions now
determined form the complete set of hyperbolic involutions

among the points.

(ii) Odd degree, c2r+1.

It has already been shown that in the odd case any pole is

itself a point of the group and is a double point of an involution
among the remaining points. Without any loss of generality
we can therefore take X at P0 and any possible second pole X±
at Px. Then for the first involution we have 0O — n (mod 2tc)

in addition to equations (5). For the second involution we have
Oi — ß (mod 27u) in addition to equations (6) in which £, t' take
the values 0, 2, 3 2r% (t ^ C). This finally leads to

where «9 can take any of the values 0 to 2r. Hence if two
involutions can be formed in this manner, 2r + 1 involutions can
be so formed. Also the angle P0yP, for any P, is a value of
(tt — ß)/2.

There are 2r + 1 positions for the pole X and Y is fixed
uniquely as the harmonic conjugate of X with respect to the
two points of e2r+1 nearest to X.

4. We now determine the basic algebraic forms for vr. Suppose

P is any intersection of er with AW of the triangle XYZ,
given by a factor mx — y 0 of vr. Then when YZ is
projected to great distance P on 17 is given by m — y 0.
Hence the corresponding factor of er in the X YZ field is
x sin 0 :— y cos 0, where 0 <5 XyP, apart from a possible
scale adjustment.

L'Enseignement mathém., t. V, fasc. 2. 7
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(i) It has been shown that for all polar curves, vr 0, of
degree > 2 with more than one pole the centres of the involutions

on the circle are at great distance. A curve may also have
a polar curve of degree 2, e2 0, and hence for c2 we only
consider possible centres of involution at great distance.
Since the join of the two points on the circle has to pass through
two points at great distance, the two points themselves must be

at great distance and are therefore the isotropic points and

v2 a x2 + y2

Any other point on the line at great distance is a possible centre,

(n) V2r ir > 1) with the corresponding points onI7 all real.

Denote the angle XyP, where P is any of the points, by S;

then

r-1
E

0
vir a n [x2 sin2 (s + ~) ~ y2 c°s2 (8 + ~)] •

a (x*+ y*)r XX [cos ^2 8 + — cos 2 oj where tan <D yjx
0

a (x2 + y2)r [cos 2 r 8 — cos 2 r <D]

a (x2 + y2)r cos 2 r 8 — x2r \l —
^ r ^

^—— tan2 <D2r(2r — 1)

2!

+ >1'--—»I t,n,t J,

a (a:2 + y2)r cos 2 rS— \x2r —
2-^^—— y2

2 r (2 r — 1) (2 r -2) (2 r — 3) 1

+ » »-...J-
(iii) c2r (r > 1) with the corresponding points on XY all

imaginary and distinct.

The product of x sin ^0 + + y cos ^0 + where

0 p + (P and q being real and q ^ 0), and its conjugate
gives the expression

(x2 cosh 2 q — cos ^<E> + p +

where tan 0 y/x. Giving s the values 0, 1, (r — 1) the

product of the resulting expressions is proportional to
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(x2 + y2Y [cosh.2r^ — cos 2r (<D + p)]

(x2 + y2)r cosh 2 rq — cos 2 rp \x2r — — x2r 2
y2 +

+ y sin 2rp j^2rx',2r-l _ 2 r (2 r — 1) (2 r — 2) ^r-3 fl#a

3

Now e2r contains even powers of # only, and hence we must take

p tnßr, where t is an integer, and cos 2rp — ± I.
Giving s its run of values and t 0, we get from

x sin 0 + —) + y cos 0 + —) one set of points and a second

set from their conjugates. Changing t by an even number
interchanges each set within itself: changing t by an odd
number interchanges the sets completely. Hence it is sufficient
to take the two values 0 and 1 of £, obtaining for t>2r

(x2 -f y2)r cosh 2 rq — |x2r —
^ r ^ ^

—x2r~2y2 -f- ...j (t 0)

or

(x2 4- y2Y cosh 2rq 4- j^2r —
2r

j~
1) x*r-2 y<i + _| (^ 1)

(The mate of a point s in one set is given by s' 2r — 41 — «9

in the other.)
An inclusive form for c2r is

a (x2 4- y2Y + b \x2r — 2r^2\~ ^ x2r~2y2 + •••] •

(iv) c2r+1 with the corresponding points on A F all real and
distinct.

«w «» n [*2 ^2 - 2 cos2 ferf] •

r-1
yx2rfl [tan«

(x 4- iy)2r+1 — (x — Iy)2r+1

and

Ä
2t

Vu [a;2r — —— *2r 2 + •••]

We have so far considered only the basic forms of We now
consider the possible combinations and special forms of e which
may occur in a complete V.
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5. If some of the intersections of Vr are real and some are
imaginary (all being supposed distinct), then Vr must be

replaced by Vs Vr_s where Vs is built up from basic e's with
real intersections and Vr_s from basic e's with imaginary
intersections.

The points of a e2r will not be distinct if for some value or
values of

8, s, s/ (s/ -=A s)

tan (8 + sn/r) ± tan (8 + s' izjr)
that is

8 -j- siz/r — ± (8 + s' 7r/r) (mod tt)

or
2r8 0 (mod tt)

This implies that the points are all repeated and are at r alternate
poles of v2r. These points may be given by a (er)2 with cos rS=0,
cos 2rS £= — 1 in the case when r is even or with cos 2rS + 1

when r is odd, and must then be replaced by e2r-

Again e2 to any power may occur in V and for Vr we must
have vl_Vr_2l.

The modifications required for any combination or extension
of these circumstances or for peculiarities of higher orders are
manifest. It can readily be shown that

P V / TV \ ...t P (ff-l)TC\ «= V
2p(S) 2p(8+-) + 2pg(8)

where the portion of the suffix in brackets denotes the value of
" S " for the attached e2p and defines the position of the points
of the involution. The corresponding factor of V is then e2pg.

It can also be shown that

P(2p + 1) ^2(2p + l){Tr/(2p + l)(2r + l)}"" P2(2p +1 ){r;r/(2p +1 )(2r +1 )} P(2p + l)(2r + l) *

If p, q are odd and p Ts prime the expressions epg and v2mp

cannot have a common factor unless the p poles of ep are points
of ^2mp "

Vr and will be referred to as of order r and are homogeneous

of degree r in x and y.
6. We now consider the assemblage of terms which form

/ (#, 2/, z), 2ar Vr zN~r, where the a's are constants, and the F's
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are of the forms previously specified. Possible involutions
determined by each VT may be displayed on a circle, and the

only possible poles for the complete curve are given by the

common involution centres of all c's which occur. The
isotropic points given by e2 0 belong to every involution. The
number of possible poles is therefore equal to the highest common
factor, p, of the orders of the e's, not including e2 and its powers.
This implies that for any p the form of VN imposes conditions on
the existence or the form of any VN_k. If p is even the number
of involutions is p/2 and both double points of each involution
are possible poles, and the conjugate line of any such point
meets ir in a possible pole. If p is odd the number of
involutions is p, and only one double point of each involution is

a possible pole: the intersection of the conjugate line of such a

point with XT is not a pole. A possible pole will actually be

a pole if its conjugate line passes through Z.
The form of the function can be slightly modified by a real

scale change.
7. Consider a curve having a pole at X and with a multiplicity
of order k > 0 at X. From the basic forms (1) and (2) if

the curve is of even degree, k must be even and if the curve is
of odd degree, k must be odd. In both cases N — k is therefore
even. We will also suppose that there are further possible poles
on XY. Since X is a A:-ple point no powers of x greater than
N — k may occur in the equation of the curve and this power
must occur.

VN_k+t, t 0 to A, if it occurs, must contain y to the power t
at least as a factor and " at least " must be replaced by exactly
for one or more values of t. A V which contains y1 as a factor
is necessarily the product of a c's of odd order 2ms + 1, s 1 to a,
and b c's of order 2 (2ns + 1), s 1 to b1 cos 2 (2n + 1) S 1,
where a + 2& — t The total number of poles (actual and
possible) on XT is a factor of 2ms + 1 and 2 (2ns + 1) and
hence this number may be taken as p or 2p where p is odd.
From paragraph 5 it follows that is a single factor of each of
the a c's of odd order and a repeated factor of each of the b c's
of even order, and the corresponding V is the product of (vp)1
and an expression w. We can now write the equation of the
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curve in the form

f(x, y, 2) oc0sN + a2zN~2p2 + + a

+ .SaN-ft+tzft"t(('p)'+T«'t 0 '
t=0

where t is zero or a positive integer for each term. A term
containing xN~k is obtained when t is zero and must occur at
least once.

If P is any possible pole on IF and P' its conjugate phase
point, then the harmonic conjugate of A with respect to P, P'
is also a possible pole and a A-ple point. Hence when the number
of possible poles on A F is odd every such point is a A-ple point
and when the number is even every alternate point is a Zc-ple

point. In each case these possible poles (at Zc-ple points) are
the intersections of A F with 0. Let X' (x' : y' : 0) be such

a point. The tangents at X' are given by

(X ~—h F~—1- Z f (x, y z) 0
\ dx öy dz/ 1 v ' ;

and these together with the conjugate line of X' are given by

/ 5 ö ö \k+1
(x-ö-x + Yiry + zrz)

where x, y, z, are replaced by x', y', 0 after differentiation and

A, F, Z, are here used to represent the current coordinates.
Now -

(zÀ + rè + zÂ)v>p>'"»<

- rriî^n z"" (S"1 (zÂ + rÀ)'1>'•>"'1

on putting z 0 after differentiation. The expression

y Ä)*

vanishes except when t 0 since 0 when x x', y y'.
The tangent form is obtained from those values of t for which
the corresponding t's are zero. If t' is the least of these values,
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the highest power of Z is k — t' and the tangents consist of k t'
lines not through Z and X' Z counted t' times.

Now Vjsf^ is of odd order, hence if the number of possible

poles is odd the term ocjv-k-i zk+1 VN-k-i either contains vv as a

factor or 0, and if the number is even must be

zero. In either case the term does not appear after the substitution

of y1 for X, y and therefore makes no contribution to
the tangent and conjugate line form. We now obtain

(t + l) i (k — t) r
[k ± " ' ^ (* - t) (X^+ Y^)t+\

leading in exactly the same way as before to k — t' lines not
through Z and X' Z counted t' times and a line also through Z.
This last line must be the conjugate line of X'. It follows that
the conjugate lines of all the possible poles on X Y pass through Z,
a point determined previously by the conjugate lines of X and a

specific pole Xv Hence all the possible poles are actual poles.

Special forms of the F's can lead to multiple points on 17
which are not poles.

8. The general problem of the total number of poles or of
their distribution has not been solved. From the degeneracy of
the first polar curve with respect to any pole P into a curve of
degree N — 2 and the conjugate line, the Steinerian must have a

multiplicity of order N — 2, or equivalent singularity, at P.
There is therefore, in general, an immediate crude finite limit
to the number of poles. When N is odd another limitation is

provided by the number of real inflexions. It has been possible
however to obtain some detailed information concerning
properties and numbers for certain types of curve.

We show first that any curve of even degree whose equation
is symmetric in £2, ?/2, z2 has nine poles on the sides of the triangle
of reference. It's equation can be written as

where
2ars(sl44 0

Si x2 + y2 +z2 s2 y2z2+ + 2 y2 2 y2

It clearly has poles at X, Y, Z.
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Making the transformation

xf x 2/' -1- ^ z' — y — *

leads to an equation of even degree in x\ y\ z\ and the curve
therefore has poles at X' (which is X), Y' and Z\ the vertices
of the new triangle of reference. Referred to the original triangle
the curve has poles at (0: 1: 1) and (0:1: — 1). Similarly there
are poles at (1:0:1), (—1:0:1), (—1:1:0) and (1:1:0).

These six new poles are collinear in threes and the lines through
them form a quadrilateral of which X YZ is the harmonic triangle.
Any triangle of type XY' Z' is such that each side is the polar
line of the opposite vertex and referred to such a triangle the
curve has poles at its vertices and at points not on the sides.

We have established that if there are r poles on a straight
line they can be transposed on to a circle to form an equispaced
system of points. If r is even and p is the transpose of a pole P,
the point p' diametrically opposite to p is also the transpose of
a pole P'. If r is odd, the point p' does not correspond to a

pole but to a point P' which is the double point corresponding
to P of an involution formed by the intersections of the curve
with the given line. In either case the conjugate line of P

passes through P' and that of P' through P. Any such point,
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P or P', will be referred to as a phase point, and. if two phase

points are such that the conjugate line of each passes through
the other they will be termed conjugate phase points. From
consideration of the circle it follows that if is a phase p.oint,
not necessarily a pole, then its harmonic conjugate with respect
to P,P' is also a phase point such that both points are poles or
neither are poles. It is obvious for the circle and therefore for
the line that when r is odd the poles alternate with the remaining

phase points.

Suppose there are r poles, R, on a line I and that is a pole
not on the line (see fig. 3). Let h be the conjugate line of meeting

Iin 0 and let kbe the harmonic conjugate of I with respect to
OH and h,Thenfrom the previous theorem the join of H to any
pole R meets kina point R' which is also a pole, and hence there
are exactly r poles on ksincethe process is reversible. If 0 is
a pole, its conjugate line will pass through H and hence meets h
in a pole H'.Theconjugate line of H' is OH and its k line coincides

with the k line of H. HH' will pass through a phase point
on I which will be a pole only if r is even.

Suppose P1 P2 P3 PiP5isa regular pentagon with circum-
centre Z and let the regular pentagon formed by the joins of

R R 0 I

FIGURE 3.
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alternate vertices be Q2 (?3 Qb with Pr ZQr collinear. Let
the point at great distance on the side opposite Pr be Xr1 and
the point at great distance on Pr Qr be Yr. Suppose a curve
can be drawn symmetric about the five lines ZPr and with a

pole at Px with corresponding conjugate line Q1 Xv By
symmetry all the Pr's are poles. The Mine of P2 Qb Q1 Pé Xs
with respect to the pole Pt is X4 PzQiQz P51 the joins of
corresponding points passing through Pv Hence X4, Ç5, Q2, Z3 are
poles and by symmetry all Çr's an(^ -^r's are P°les> giving a

closed system of poles. Since Px Q1 X1 is a self polar triangle
with all the vertices poles, the curve is of even degree. The

configuration has poles not on the sides of a basic triangle but
no algebraic curve has been found to satisfy the primary conditions.

The joins of any pair of conjugate phase points on IF to
y (fig. 1) are at right angles and therefore after projecting 17
to great distance from ?/, the pencil of 2q lines joining Z to the
phase points on 17 forms an orthogonal involution. Galling
the phase points taken in ordered sequence Z0, Z4, Z2, Z2g_1?

the lines ZZr, ZZg+r are at right angles. Since the conjugate
of Zr with respect to Z0 and Zq is Z2g_r, the lines ZZr, ZZ2q_r

are equally inclined to ZZ0 «tnd ZZq. All suffixes are mod 2q.

The 2q lines therefore form an equi-spaced system, the angle
between any two successive lines being izßq. Let L be any
point on the curve and let Zq^T be a pole. If L' is the image
of L in ZZr, the conjugate line of Zq+r, then ZL, ZL' are
harmonically separated by ZZq+r1 ZZr and L' also lies on the curve.
The curve is therefore now symmetrical about the conjugate
lines of all the poles at great distance. If H is any other phase

point, necessarily finite, its kaleidoscopic images in these
conjugate lines are, from the symmetry, also phase points and of
the same type.
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