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ON SOME VERSIONS OF TAYLOR’S THEOREM
by R. P. Boas, Jr., Evanston

(Regu le 10 juin 1959.) : !

A familiar form of Taylor’s theorem with remainder states
that, under suitable hypotheses, if n > 1,
‘ : ) -l
(1) fla) =7f(o) +af (o) + - + TEWN
It is usual to suppose at least that f is continuous in [0, a], that
f™1) is continuous in [0, a), and that /™ (z) exists (finite or
infinite) in (0, @). The formula can, of course, be written down
under less stringent hypotheses; a recent paper in this journal [1]
shows that it is valid when the continuity of f™1) at 0 is omitted.
This has been noticed before [2]. What I want to point out is
that while the theorem with is true the weaker hypothesis, it is

trivial. More precisely, we have the following result.

foet) (o) + 2 f™ (g, 0< & <a

E

Tueorem 1. If £V is not continuous (on the right) at 0, f™
assumes all real values itn 0 < x < a and so (1) holds for
some & whether the coefficients have Taylor’s form or not.

This was in fact proved long ago by Hosson [3, vol. 2, p. 203] -
with the unnecessary additional restriction that f™ is never
infinite in (0, a). '

The proof depends on two facts, the first of which is a well
known corollary of the law of the mean.

Lemma 1. If f is continuous and 1’ (x) exists (finite or infinite)
in p < x < q (as a right-hand derivative at p), then if the
limit t' (p*) exists (finite or infinite) it is equal to ' (p).
That is, f cannot have a simple jump, finite or infinite.

Lemma 2. If f is continuous and f' exists (finite or infinite) in
(p, q), while £ (p™) does not exist (finite or infinite) then t' (x)
assuines every finite value in (p, q).

Lemma 2 is proved by Hosson [3, vol. 1, p. 363] with the
unnecessary restriction that f is finite in (p, ¢q). Since the
proof is short and the result is not well known, I give the proof.
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If f (z) does not approach a limit as z - p*, neither does the
continuous function H (z) = f (x) — Az, where A is an arbitrary
real number. Hence H is not monotonic in a right-hand neigh-
borhood of 0, so it has extrema. At an extremum &, H' (§) = 0,
Le. f (§) = A

Now consider Taylor’s theorem when f™ ') is not continuous
at 0. Since f™ is a derivative, by Lemma 1 it does not
approach a limit; by Lemma 2, /" assumes every finite value;
consequently Taylor’s theorem (1) is trivial.

We can go further and exclude some other plausible weakened
hypotheses for (1). There is, for example, nothing in the struc-
ture of (1) to require that ™ is continuous if we admit infinite
values for /™. However, we can establish the following result.

Tueorem 2. Formula (1) is trivial unless 1V is continuous
in [0, a): and ™ is (Lebesgue) integrable on every subinterval
(0, b) and bounded on one side.

In fact, if f™(z) is finite in (0, @), ™! is continuous in
(0, a) and so in [0, a) unless (1) is trivial. Suppose that f™ (c)
is infinite, 0 < ¢ < . By Lemma 2, unless ™! approaches
limits from both sides as z - z,, /™ assumes all real values and
(1) is trivial. If f™) approaches limits from both sides at c,
it is continuous at ¢ by Lemma 1.

Again, if f™ is unbounded both above and below, it assumes
all real values since a derivative has the Darboux property
[3, vol. 1, p. 379]. If /™ is bounded below, then f®™ (2) 4 )z,
with a sufficiently large 2, is non-decreasing. It follows from
Fatou’s lemma that /™ is integrable on every (0, b).

There are a number of other forms of the remainder in
Taylor’s theorem, of the general type

(2) : R,=A,g (5 1™ (), 6<E<a,

with a suitable auxiliary function g, and A, independent of f
and &.

Tueorem 3. The propositions about the trivtality of Taylor’s
theorem that we have established with g (x) = 1 still hold with
the remainder (2) provided that g is bounded away from 0 in
every neighborhood of a and 1/g is a derivative.
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To verify this we need slight extensions of Lemma 2, and of
the fact that derivatives possess the Darboux property.

Lemma 2. If f is continuous and {' exists (finite or infinite) in
(p, q), while f (p™) does not exist (finite or infinite); if G is
continuous in [p, q), G’ exists (finite) in (p, q) and G’ (x) %= 0
in (p, q); then t' (x)/G" (x) assumes every finite value tn (p, q).
Since f (p™) does not exist, H (x) ="f (xr) — AG (z) does not

approach a limit (since G (p*) does exist). Hence H is not

monotonic and so possesses extrema. At an extremum & we

have H' (&) = 0, so f' (§) = AG' (§). Since G’ (£) is neither 0

nor infinite, f' (£)/G" (§) = A.

Lemma 3. If f and G are continuwous in [p, q]; if f exists
. (finite or infinite) in [p, ql, and G’ exists (finite) in [p, q];
“if ' (p) and ' (q) are finite and G has a fized sign (and hence
is never 0) in [p, q]; and if |
;PG (p) < e < f (@G (q),

then there is a & in (p, q) such that £’ (£)/G" (E) = ec.

This says in effect that f'/G’, like f’, has the Darboux
property. '

Consider H (z) = f () — ¢G () and suppose for definiteness
that G’ (p) > O. Then H’ (p) < 0, H' (q) > 0, so the contin-
uous function H cannot assume its minimum at p or ¢. If H
assumes its minimum at ‘&, we have f (&) = ¢G’ (£) and so
(since G’ (£) is neither zero nor infinite), f' (£)/G’ () = c.

It now follows just as before that Theorems 1 and 2 hold,
with g = 1/G" in (2).
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