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VECTOR FIELDS ON SPHERES
AND ALLIED PROBLEMS1)

by Raoul Bott 2)

The problem on whose development I would like to report is

very easily stated.
A set of k maps fi:En-+Etni=i,...,k;oî Euclidean rc-space

into itself will be called an orthogonal k-system if:

f1 (x) — x for all % e En and

f1 (x), fk (x) form an orthonormal systern whenever x is a unit
vector.

With this terminology our question is the following one:

Find the greatest integer k, so that E„ admits an orthogonal
k-system.

Geometrically an orthogonal A-system on En is precisely a

continuous (k — 1) frame on the unit sphere Sn-t c En1 as is

seen immediately once the tangent space of Sn^1 at x e Sn_ 1 is

identified with the orthogonal complement to the subspace
generated by x. We are therefore dealing with a very special
case of the general question of how many independent vector
fields exist on a manifold, and this central position of our question

has made it the favorite testing ground of progress in Algebraic

Topology. It is not in the spirit of this talk to recount the
precise evolution of the problem, or pay tribute to the many
people who have contributed to it, be it through the general
theory of vector fields, or through a specific attack—Poincaré,
Hopf, Stiefel, Whitney, Steenrod, Whitehead, Wu, Addern, are
just a few names which come to mind—rather, I would first like
to recall an old algebraic result in this direction and then go on
to some of the most recent work which topologically confirms
the algebraic findings.

1) Talk delivered at the Zurich Colloquium on Differential G-eometry and Topology,
June 1960.

2) The Author holds an A. P. Sloan Fellowship.
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First of all it is convenient to recast the question in this
manner:

Problem I. Given k, for what n does En admit an orthogonal
\-system

Before discussing this question, let us formulate its linear
version. If we call an orthogonal /c-system linear whenever each
of the functions fh i 1, k\ comprising it is linear, then this

querry is:

For which n, does E„ admit a linear orthogonal k-system

This purely algebraic question can also be expressed as

follows. A linear map

y: Ek ® En -> En k ^ n

will be said to define En as an E^-module if for all x in Ek and y
in E„

I jU 0® J>) I I X I • I I
»

The vertical bars denoting the Euclidean norm. It is then quite
easy to check that En admits the structure of an jEfc-module if
and only if En admits a linear orthogonal A-system. In this
guise then, the associated algebraic problem is stated as follows:

Problem II. What are the dimensions of the possible Ek-modules.

The complete solution of the linear problem is given by the
theorem of Hurwitz-Radon [10, 11, 16].

Theorem I. If Ak denotes the set of dimensions of possible
Ek-modules then there exist integers &k so that:
1. Ai {«at }

One has:

2. flft + 8 16 ai1

3. The first eight values of a iare:1, 2, 4, 4, 8, 8, 8, 8.

Immediate corollaries are:

a) The integer a.k is always a power of 2.

b) Ek occurs as an Ek-module (i.e., s.k — k) if and only if
k 1, 2, 4, 8.



VECTOR FIELDS ON SPHERES AND ALLIED PRORLEMS 12 7

A lovely proof of this theorem is given by Eekmann in [8].
Very briefly, his argument takes this form.

Let Gk be the abstract group generated by the symbols 1, s,

oq, Ofc, subject to the relations:

1 — identity; s2 1 ; sat s (i 1, k)

CTiOj=EOjGi i # J I
CT? £ i 1, k

Next let a G^-module, TV, be called special if s acts as — 1 on
W. It is then easy to verify that;

E„ admits the structure of an Yik-module, if and only if there

exists a special Gk-module of dimension n over the real numbers.

(In one direction this correspondence is obtained by sending

ai into fi and s into — 1, whenever fu fk is an orthogonal
/c-system. This function is then seen to define a representation
of Gk.)

We are thus led to seek the special ^-modules and it will
clearly suffice to find the irreducible ones among them.
Eekmann determines these with the aid of the representation theory
of finite groups. He first finds the irreducible special complex
Grmodules—it turns out that there is only one isomorphy class

of these if k is odd, and that there are two such classes, however
of the same dimension, when k is even—and then determines
the real irreducible special Gfc-modules by the Schur criterion:
A complex Gfc-module, W, is the complexification of a real one
if and only if the character, xw-> of W -,

satisfies the condition:

ZXwO2)>0, geGk.

It is at this point that the mod 8 dépendance of the answer
emerges.

So much, then, for the linear case. The theorem of Radon-
Hurwitz of course also gives us information about problem I.
Indeed if we denote by Ak the set of dimensions n, for which En
admits an orthogonal /c-system, then Ak contains so that
Ak furnishes a lower bound for the set Ak.

Actually, at the present time there is no counter example to
the conjecture that Ak equals Ak, however we are still far from a
proof of such a fact. (Added in Proof: F. Adams has just estab-
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lished the validity of this conjecture.) The following theorem,
due to I. M. James [12, 13, 14] possibly best describes the
presently known information in the direction of this conjecture.

Theorem II. Let Ak denote the set of integers n, for which En

admits an orthogonal k-system. Then there exist integers ak

with the property :

Either Ak {n ak} k 1,2,...
or Ak {n ak) n 2, 3, 4,

further in the latter (exceptional) case, k < ak ^ 2k—1.
Finally, for all k, ak+1/ak 1 or 2.

The James theorem is clearly a great step towards the
conjecture that Ak Ak. The next step, one hopes, will be the
elimination of the exceptional cases. (In this direction Adams
has quite recently shown that in the exceptional case, ak must
actually equal (2k — 1).)

We sketch the main lines of the proof briefly. Let Onk be

the Stiefel manifold of A-frames in Enl and let tu : On,k On, 1

be the fiber-projection on the first element of this frame. Then
an orthogonal A-system on En is equivalent to a section s:
On,i 0Hjk of this fibering. (If /l7 fk is an orthogonal
A-system, s is defined by «9 (x) — /2 (x), fk (;r)} Now by
the covering homotopy theorem the problem can be formulated
entirely in terms of homotopy groups. Indeed, iz\ 0n?kOnA
admits a section if and only if 7rn_ x (Onk) maps onto 7r„_ 1 (OnA) Z
under n*. (Any element a, projecting onto the generator can
be deformed into a section.) To recapitulate—from this point
of view Ak consists of those integers n for which

n*: Un- 1 (On,k) nn- 1 (°n,l)

is surjective.
The first step is now to show that if n and m are in Ak, then

n + m is again in Ak. In the linear case this is trivial enough—
if En and Em are Ek modules, then En © Em is again an Ek module.
The topological counter part to this argument is given by the
join map X of James, which takes On>k * Om>k into On+m,k. Here *
denotes the join, and X is defined by:
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If X {-Xi} and y {yt}, i 1,..., k, are ^-frames in En and

Em respectively, then X (x, £, y) ; o ^ t ^ 1 ; is the frame {x; cos

ntß © sin 7if/2 } in En © Em.

In the usual manner the map

On,k * Om,k > On + m,k

defines a pairing

A* 7lr {On,k) © (Qm,k) ^r + s+ 1 (^n+ m,k)

and the naturality conditions of X* relative to 7t* easily yield
the fact that Ak is closed under addition. To get further, one
needs at least a partial subtraction law. The basic result in this
direction is James's extension of the Freudenthal theorem:

Generalized Freudenthal theorem. Suppose that neAfc
and let s (Onk) project on a generator of nn^1 (On>l).

Then s*: tu* (Omtk) ni+n (0„+m,k) defined by: s* (y) X*
(s 0 y), is a bijection for i ^ 2 (m — k + 1).

Roughly this theorem enables James to conclude that if
n -f- m e Ak and n is small relative to n + m then m is also
in Ak. By subtracting the lowest integer in Ak successively as

far as possible he then obtains theorem II.
James prove the generalized Freudenthal theorem by induction

on k. For k i, we have precisely the Freudenthal theorem.

The crucial fact here is a " boundary " formula of the
type

[7/1* (a 0 b) 2* (ya 0 b) ± a 0 2* yb

where y is the boundary in the homotopy sequence of fiberings
of the type On>k->OmX. I will not describe it more precisely.
However, this formula is the hardest and its proof the most
geometric part of the whole theory.

Theorem II does not include all the presently known information

about our vector-field problem. By means of cohomology
operations one can, for instance find restrictions on the set Ak.
I will not attempt to do justice to these but, rather, say a word
about the parallelizability question which was settled two years
ago.

L'Enseignement mathém., t. VII, fasc. 1. 9
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The problem is: For what n, does admit an (n — 1) field,
or put more geometrically, for what n can a global parallelism be

defined on Sn-l In our notation the question is simply : When
does Ak contain k

The answer, due independently to Milnor [7] and Kervaire [15]
asserts that, just as in the linear case, this phenomenon occurs
only if k lj 2, 4 and 8.

At present several proofs of this result are known. The most
topological proof is obtained by applying the work of Adams [1]
on the decomposability of certain primary operations in terms
of secondary ones. (This result becomes pertinent in view of
the following construction. Corresponding to a g tun~i (On>n)

let be the bundle determined over and let Xa Sn ua e2n

be the complex obtained by forming the 1-point compactifi-
cation of £a. Then if a represents a section of tc : On>n -+ On l it is

well known that Sqn: Hn (Xa) H2n (Xa) is nontrivial. Now
by Adams, this can occur only if n 1, 2, 4 or 8.)

The original solutions of the parahelizability question were
based on divisibility properties of the characteristic classes of
vector bundles. Quite recently Atiyah and Hirzebruch brought
another proof based on this principle, which is possibly the most
satisfactory one. The main steps are:

If £ is a (real) vector bundle over a complex X then w (|)—the
Stiefel Whitney class—is a well determined element of 77* (X; Z2)

which has component 1 in dimension 0. This class is not affected

by adding a trivial bundle to Now it is not hard to see that
k g Ak is equivalent to the assertion: Sk admits a vector bundle

with w(£) ^ 1. (If a g (0Wj„) is a section, then 7T* a (mod 2)

can be identified with the component in dimension n of w (£a) — Ça

being the bundle over Sn determined by a.) With this as a

starting point, the hard part of the parahelizability question is

to show that w (Ç) 1 whenever £ is a vector bundle over a

sphere of dimension > 8. Suppose then that Sn S8 + m, m > 1,

so that Sn Sm # S8 where # denotes the identification space
obtained from Sm X S8 by collapsing the wedge Sm v S8 in
Sm X S8 to a point. Now the periodicity theorem for the stable

orthogonal group asserts [5/6]:
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LetX be a finite CW complex,and let (real) vector bundle

over X # S8. Then there is a bundle,Ç/X, over X, and a cannonical

8 dimensional bundle X over S8, so that 2, 2/X ® X, where

denotes the reduced tensor product and the congruence is taken

modulo trivial bundles.

Concerning the reduced tensor product of two bundles 2 and 7)

on X and Y one has to recall that determines a bundle

on X # 7, and that w(2® rf)isdetermined by 2 and r\ according

to the law:

Let
n m

w(0 (1 + xt) n dim £ ; w (rj) f] (1 + y/) m dim rj

l i
Then

w(£ © rj) « UtAl+Xi+yM w(0 }m * { }n

Now, if one takes a bundle £ over Nm+8, m > 1; it follows from
the periodicity formula that w (£) w (|/X (x) X), and a purely
algebraic estimate, using the fact that w (X) 1 + u, where u
is the generator of H8 (S8; Z2), and that X has dimension 8, shows

that w (%) 1 under these conditions.
I would like to take up the ** allied " problems next. We

have been concerned with the question whether re : On>k^ On>1

has a section. Now this problem has an obvious analogue for
the other two fields over the real numbers. The spaces 0pq
are perfectly well defined over the complex numbers (unitary
(/-frames in Hermitian p-space) and also over the Quaternious
(Symplectic (/-frames in Symplectic p-space). Hence the
question of whether Ontk -> On>1 has a section is also meaningful
over the complex numbers and the quaternions.

The method of James turns out to be applicable to these
cases also. In fact, it yields the following stronger result:

Theorem III. Let Bk, [Q] denote the set of integers for which
0n k On X has a section in the complex [quaternion] case.
Then there exist positive integers bfc [ck] so that

Bu {nbk}
Ck {nck}
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In these two instances, then, there are no exceptional cases.
The proof of James follows the earlier pattern. The result is

stronger because the extended Freudenthal theorem is applicable
in a greater range of dimensions. However, there is this great
difference: In these two cases there is no known information
about the linear case—in its strongest formulation there are no
linear orthogonal k-systems for k > 1—in particular it is not
apriori clear that Bk is nonempty for k > 1. To show that
indeed Onik-^0„tl has a section for some n, James again uses
his boundary formula essentially to derive this fact from the
fmiteness of the stable homotopy groups of the spheres.

There is another path to this theorem. Motivated by certain
other results of James, this approach has recently been perfected
by M. Atiyah [2]. It proves that Bk consists of multiples of a
certain integers bk by essentially identifying Bk with the kernel
of a homomorphism of a cyclic group. I will discuss only the
complex case, as the quaternion case is entirely similar.

Several steps are involved. First we reformulate our
problem once again. As our concern is now with the behavior of

7z2n-i under the projection On}k-+On>1 we may replace 0Hik by
its 2ft-skeleton, which can be constructed in a very simple
manner when n/k is large. Let Pn denote the projective space
of the one-dimensional subspaces of complex ft-space Cn. (Thus
Pn is the projective space of complex dimension n — 1.) Next,
define Pn k to be the identification space PnIPn_k, the inclusion
Pn~k ^ Pn being induced by the inclusion c Cn. We

clearly have a natural projection n: Pn,k~^ Pn,h and it can be

shown that the suspension of 7u', that is Eon': EPnk EPn>i

S2n—ii represents the projection 0„tk-+0ntl in the pertinent
dimension—at least if n/k is large. Using cohomology operations

to eliminate low ratios of this integer, one concludes, that
On,k~+ On,i has a section, if and only if (E' o n)* is surjective
in dimension 2n — 1. Finally, again using the apriori estimate
on n/k one can redefine Bk in terms of purely " stable " notions.

The integer n e Bk if and only if some suspension of the map n :

Pn,k~>S2n-1? admits a right homotopy inverse.

Precisely then, the condition is that there should exist an m,
and a map /: Em S2n-i -> Em P„ik so that Em n o f be homotopic
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to 1. Colloquially one may also put it this way: "The top
cycle of Pnk should become spherical after a suitable number
of suspensions." James calls this condition N-reducibility.

To proceed further we need the notion of the generalized
/-homomorphism, and of the twisted suspension.

Let I be a finite CW complex. We write KO (X) for the

suspension classes of real vector bundles over X (see [3, 9]).
Thus two bundles \ and r\ determine the same element, [£] se= [yj],

in KO (X) if after suitable trivial bundles are added to both they
become isomorphic. Next define J (X) as the set of equivalence
classes of vector-bundles over X, in which two bundles are
considered equal if after suitable trivial bundles are added to them,
their unit sphere-bundles are of the same fiber-homotopy type.

Finally / shall denote the projection KO (X) -> J (X). The

Whitney sum now defines a group structure in both these sets
and makes / into a homomorphism. So interpretted / is the
generalized /-homomorphism. A first observation is now,

Proposition 1. J (X) is a finite group.
The proof follows more or less directly from finiteness of the

stable homotopy of the spheres and the definition of fiber
homotopy type.

Finally the twisted suspension of X, by a vector bundle \
(over X) is defined as the one-point compactification of Ç, and
will be denoted by X^. The terminology is justified by this
formula:

X(^+1) E -X5

where 1 stands for the trivial bundle and E denotes suspension
as before. One also needs the convention that when E, has
dimension 0, then X5 is to be the disjoint union of X and a
point.

This construction is pertinent to our discussion for the following

reason: Let Pk be the orthogonal projective space to Pn__k in
Pm and let t denote its normal bundle. Then it is geometrically
clear that t can be identified with Pn — P„-k. Hence Pnk Pxk.

The bundle t splits into the direct sum of (complex) line-bundles
as is also evident because Pk is a complete intersection in Pn.
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Thus, if £, is the normal bundle of in Pk Pk+i then Pn k is given
by:

p _ p (n-k)Ç
rn,k — k

To return to the general situation—First there is the following
rather easy relation between J and the twisted suspension:

Proposition 2. Let 2, be a vector bundle over X. Then is

of the same S-type as X if and only if J [£] 0.

(Here, as usual, two spaces are of the same S-type if suitable
suspensions of them are of the same homotopy type.)

Suppose now that M is a compact differentiable manifold.
If 2, is a vector-bundle over M, the Ä-reducibility of is defined
exactly as it was for Pn k—the top cycle of has to be stably
spherical. Let v be the normal bundle of M imbedded in some
high dimensional sphere SN. By collapsing the exterior of a

tubular neighborhood of M in SN we obtain a map SN Mv
which clearly establishes Mv as iS-reducible. This argument
makes the following proposition plausible:

AT* is S-reducible if and only if J ([£] —[v]) 0.

By replacing M with Pk this last formula now immediately
yields the theorem of James. Indeed, in this case [v] — k [Ç]
as is well known. Thus Pn k p\^~k)^ is ^-reducible if and only
if J (n[^]) 0. Because J (Pk) is finite, and J is a homomoi-
phism the theorem follows.

The last formula is really a special case of the following duality
theorem of Atiyah, which was also independently proved by
A. Shapiro and the Author.

Duality theorem. Let ~K.be a differentiable manifold, and let |
and Z,' be two vector bundles over X so that \ Zffj — ([Ç] + [t]),
where t is the tangent bundle of X. Then the S-types of X^
and X«' are dual to each other in the sense of Spanier Whitehead

[17] :

D [Z*] - [A"^"T]

A remark is now in order as to why the real case cannot be

treated in this manner. Actually one can procédé quite similarly

at first. In the real case 0Hik is approximated by the real
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analogue of Pn>k, rather than by EPn>k as it was in the present

situation, however this is no serious drawback. The exceptional
case can occur precisely because one is not always able to eliminate

low ratios of n/k apriori, so that the N-reducibility of Pnk

is not necessarily an equivalent problem to the existence of a

section to the fibering 07hk-+0n>1. The N-reducibility of the

real PIl}k of course has the same sort of answer as in the complex

case.

In conclusion let me report on estimates which Atiyah and

Todd obtained for the bk of theorem II [3]. Let \p (N) denote

the power to which the prime p occurs in the integer N. Now
let integers Mk be defined by the formula:

lP(Mk)
sup (r + Xp (r)) 1 S r

0 if p > k

k—1
if p û k

Theorem III. The integers bfc of theorem II (for the complex
case) are divisible by Mk.

The principle on which this estimate is based is the following
one. As we have seen, our question is really: For what values
of n is the top cycle of Pn>k " stably spherical That is, when
does this homology class become spherical after a suitable
number of suspensions.

In short, we need criteria for stably spherical homology
classes. The following simple procedure clearly yields such
criteria. Suppose B is a space in which the stably spherical
classes are already known. Then if u eHi(X) is a homology
class in A, it will be stably spherical only if for every map /:
X B, /* u is stably spherical in H* (B). Such a criterion is of
course only effectively applicable if we know how to compute
(1) the set of homotopy classes of maps of X into B and (2) the
homorphisms these classes induce in cohomology.

The best known application occurs when B is an Eilenberg-
Maclane space. Here there are no stable spherical classes except
the lowest dimensional ones—(in the stable range). In this way
one obtains the criterion that u is stably spherical only if the
value of any stable primary cohomology operation on a lower
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dimensional class, vanishes on u. (This criterion can be applied
to our problem, however it yields considerably weaker results
than those given by theorem III.)

The results of Atiyah Todd, are in fact obtained by using for
their testing space B, the universal base space, Bv, of the infinite
unitary group. As a consequence of the periodicity [5]:
Q2 (Z x Bjj) Z x Bv one can determine the spherical classes

in Bjj rather easily, and for stable spherical classes one can
derive this criterion: There is a rational cohomology class ch (with
components in all dimensions) in H* (B^; Q), such that if u is

a stably spherical class in Hfc (B^) then ch (u) must be an integer.

Thus, if we write KU (X) for the homotopy classes of maps
of X into BVl and for £, e KU (X) write ch ch, then
we have the criterion:

u e Hfc (X) is stably spherical only if for each Ç e KU (X),
ch (£) u is an integer.

It is this criterion which yields the Atiyah Todd theorem
modulo some rather delicate number theory.

How does one carry out the steps (1) and (2) of our program
in this case Here it is only fair to admit, that the space Bv
is not an ad-hoc testing space, but rather that it is more or less

God given. Indeed, by virtue of the classifying theorems for

bundles, KU {X) can be interpretted geometrically as the
suspension classes of complex vector bundles over X. Further, if
\ e KU (X) then the element ch (Ç) in H* (X; Q) is a particular
characteristic class of E, about which a lot is known. For instance

if £ is the normal bundle of Pn in Pn+1, then ch (£) — ex — 1

where x e H2 (Pn; Z) is a generator. Now, using the known
functorial properties of ch, it follows that ch (£fc) (ex— l)k,
where is % ® ® E, (k times) in the sense of the reduced

tensorproduct. Thus, if we restrict with m ^ n — k to Pn-k

we get an element of KU (Pn-k) with vanishing character.
It is a theorem that if X is a torsion free finite CW complex

then ch: KU (X) -> H* (X; Q) is injective. This was first proved
by F. Peterson—directly by obstruction theory from the evaluation

of tzj (Z x Bjj) as Z if i is even and 0 when i is odd. A
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proof which possibly goes more to the heart of the matter emerges
from the point of view of Atiyah and Hirzebruch. They define

the groups:

KW{X) nlE-'X; Z x 0

where n [A, B] denotes homotopy classes of maps. In this
terminology the periodicity formula: Q2 (Z X Bv) Z X Bv
is expressed by:

KUl(X) KUi+2(X) i S -2
Now Atiyah and Hirzebruch use this recurrence to define KU1 (X)
for all integers i, and then show that the resulting functor
X->{KUi (X)} satisfies all the axioms of a cohomology theory
—except for the dimension axiom. Further they observe that
the uniqueness theorem of Eilenberg-Steenrod can be generalized
to yield a spectral sequence relating E2 H* (A; KU* (p)) to
KU* (X). (Here KUl (p)—the KU—theory of a point—is Z
if i is even and 0 otherwise.) This sequence immediately
implies the proposition. (See [8].)

To return to our bundles on Pn. By the proposition just
discussed the restriction of £m to Pn-k will be trivial if m ^ n — k.

By trivializing this element on Pn-k we obtain bundles on
P„tk which under the projection tu: Pn-+Pnk go over into Çm,

m n — k. In particular, n* ch (Çm) — (ex — l)m. Thus in
any case we obtain these criteria the N-reducibility of Pnk:

Pn,k is S-reducible only if the coefficient of xn_1 in (e*— l)w,
m ^ n — k, is an integer.

This is the number theoretical condition from which Atiyah
and Todd deduce theorem III. Their result is the best possible
one obtainable from the test-space Bv, because one can show
quite easily, with the spectral sequence alluded to earlier, that
the elements 1, £m; n — 1 ^ m Ai n — k; form a base of
KU(P„}k).
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