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That Y is a homomorphism of algebras follows from 4.11. In
this case Y is commutative; so the dual Hopf algebra j/* has

a commutative multiplication. Milnor found an explicit and

simple analysis of the structure of sé* as a tensor product of
an exterior algebra and a polynomial algebra. Using an equally
explicit form for the diagonal of .o/*, he was able to obtain
results on the structure of sép as an algebra. In particular, it
is nilpotent.

It is to be emphasized that Hopf algebras have arisen in
algebraic topology in these two very natural but quite different
ways. This suggests that the concept is even more fundamental
than had been thought. The next sections are devoted to
developing the theme that Hopf algebras are basic because there
are strong, purely algebraic reasons for introducing them.

7. Modules over Hopf algebras.

As a preliminary, let us review certain facts about the
category C(R) of graded modules over the ground ring R. The
two functors A ® Y and Horn (A, T), where ® and Horn are
taken over R, have values in C(R) when A, Y are in C(R).
The gradings of X ® Y and Horn (A, Y) are defined' by

(A ® Y)r I Ap ® Yq
p + q r

Horn (X,Y),J] Hompfp, Yq)
q-p r

The index of the gradings ranges over all integers.
Furthermore, there are natural equivalences

(7.1) R®XxXxX®R,Horn (R,X)xsX

obtained by identifying r®x rxx,and / (1) for
f e Hom(i?, X). The commutative law

(7.2) T:X®YxY®X
is a natural equivalence defined by T(x <g> (— i)pq y ® x
where x e Xp and y e Yq. The associative law
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(7.3) (X ® 7) ® Z « X ® (7 ® Z)

is a natural equivalence obtained by identifying (x ® y) ® z

with x ® (y ® jz).

There are three more associative laws involving ® and Horn.
The first is a natural equivalence

(7.4) U: Horn (X ® 7, Z) « Hom(X, Horn (7, Z))

defined by ((£//) x) y f (x ® y). The. second is a natural
transformation

(7.5) V : X ® Horn (7, Z) -> Horn (Horn (X, 7), Z)

defined by V (x ® g)) h (—- l)p(q+r) g (k (x)) where p deg x,
q deg g, r deg h. In case each Xp is free and finitely
generated, then V is an isomorphism. The third is a natural
transformation

(7.6) W: Horn (X, 7) ® Z -> Hom(X, 7® Z)

defined by (W (h ® z)) x — (—- 1)M (hx) ® jz where x e Xp,
z e Zq and AeHom(I, 7). If X or Z is free and finitely
generated in each degree, then W is an isomorphism.

The fact that there are precisely four basic associative laws

involving ® and Horn may seem strange at first sight. But with
a modest change of notation, the strangeness disappears. Write
17 for X ® 7, and X\Y for Hom(X, 7). Thinking of these

operations as multiplication and division, the associative laws take
on familiar forms, e.g. (7.4) becomes (XY)\Z X\(Y\Z).
In case R is a field and everything is finitely generated, we can.

set X"1 Hom(X, Ä), HomfX, 7) X"1 ® 7; and then the
analogy becomes a strict equivalence.

Now let A be a graded associative algebra over R with a

unit, and let C(A) be the category of A-modules and X-ho-
momorphisms. Precisely, an object X of C(A) is a graded
i?-module together with a multiplication A ® X -> X (i.e.

Ap ® Xq-> Xp+q for all p, q) satisfying a1(a2 x) {ax a2) x and
lx — x. An X-homomorphism/: X^ 7 satisfies f(ax) af(x).

If X, 7 eC(A), then X ® 7 is, in a natural way, an
(A ® A)-module (® means ®Ä);
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(7.7) (a ® a') (x ® y) - l)qr (ax) ® (a' y)

a' e Ag xelr.
The problem we shall consider is to give to X ® Y the structure
of an A-module so that the resulting tensor product is a functor
of two variables from C(A) to C(A) such that the isomorphisms
7.1 to 7.3 are also in C(A). Stated briefly, can we convert the
tensor product to an internal operation in C(A) so as to preserve
standard properties

The answer is that each diagonal mapping Y : A -> A ® A
which makes A into a Hopf algebra converts the tensor product
to an internal operation. In general, a homomorphism Y :

A B of algebras with unit defines a functor from C(B) to
C(A) by the rule

A® X —- for each

Thus the condition for a Hopf algebra that Y : A -> A ® A be

a homomorphism of algebras follows naturally from this general
principle.

If the isomorphism R ® X & X of 7.1 is to be meaningful
in C(A), then R as well as X must be an A-module. This means
a mapping A ® R-* R of degree 0. Combining this with the
natural isomorphism A « A ® R yields a homomorphism
e: A -> R of algebras with unit. Thus a realization of R in C(A)
coincides with an augmentation of A. Assume now that
R(g)A&A&A®R are A-mappings. It follows quickly
that s is a left and right unit for the coalgebra defined by Y.
And this implies that R®X&XttX(g)R are A-mappings
for each X e C(A).

Let us assume now that 7.2 is an A-mapping in the special
case X Y A. Since Ya a (1 ® 1), we have

TWa T(a (1 ® 1)) aT( 1 ® 1) a (1 ® 1) Wa

Therefore Y is commutative; and this implies that 7.2 is an
A-mapping for all A, Y e C(A).

Assume next that 7.3 is an A-mapping in the special case
X Y Z A. The statement " Y is a homomorphism of
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algebras " is easily seen to be equivalent to: " XF is an A-mapp-
ing Therefore

(1 ®W)Wa (1 0 V) a (1 0 1) a (1 0 V) (1 0 1)

a (1 0 (1 0 1)) a ((1 0 1) 0 1) (V 0 1) Va

It follows that Y is associative; and this implies that 7.3 is an
A-mapping for all A, f,Ze C(A).

We turn now to the functor Horn. If A, Y e C(A), then
Hom(A, Y) is an {A' 0 A)-module where A' denotes the
opposite algebra of A. The action is given bya'®a)f)x (-1
where q, r, s are the degrees of a', a, /, respectively. Assume
that A is a connected Hopf algebra, i.e. A0 « R. By a theorem
of Milnor and Moore [15], there is a unique isomorphism of

Hopf algebras c: A « A' which satisfies the identity 9 (c 0 1) Y
Yjs. It follows that (c0l)T:i-i'0i is a homomor-

phism of algebras with unit, thereby reducing Horn (A, Y) to
an A-module. With no further assumptions on A, it can be

verified (by tedious calculations) that each of the natural
transformations 7.4, 7.5 and 7.6 are A-mappings for any A, 7, Z
in C(A).

To summarize, a Hopf algebra structure in A is precisely what
is needed to convert 0 and Horn to internal operations in C(A)
with the customary properties.

An important example of a category of modules over a Hopf
algebra is the category of chain complexes and chain mappings.
In this case the algebra A is the exterior algebra on one generator
i) of degree — 1, i.e. A0 i?, A_± « R with a as basis element,
and dd 0. A graded A-module is easily identified with the
concept of chain complex, and A-mappings with chain mappings.
In order that the tensor product of chain complexes shall have
the usual A-structure, we must define Y by Yd d0l + l0d.
But this is the only choice which makes A a Hopf algebra.

In the literature, various combinations of signs have been
used in defining the boundary operator in Horn (A, Y) where

A, Y are chain complexes. The point of view of this section
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leads to the formula

(df)x d (/%)+(- l)r+1f(dx), r deg /
8. Algebras oyer Hopf algebras.

We have seen that a graded algebra is a graded 7?-module

X and an i?-mapping pt : X ® X-+ X. Suppose now that X
is also an A-module where A is a Hopf algebra over R. Then

X ® X is an A-module as defined in section 7. We define X
to be an algebra over the Hopf algebra A (briefly, an A-algebra)
if the multiplication mapping p.: X ® X-+ X is an A-mapping.

In terms of elements a e A and xly x2 e X, the condition for p.

to be an A-mapping takes the form

(8.1) a(x1x2) ^ii(-l)pqi()
where

Wa liü'i® a- p deg qt deg a[

It is to be observed that this concept of an algebra over a

Hopf algebra has arisen in a natural way. The discussion of
section 7 demonstrates its inevitability. This being true there
ought to be numerous examples.

The first, and for us the most important example, is the
cohomology algebra of a space 77*(X; Zp) over the Hopf
algebra sép of reduced power operations. The cup-product
formula

i 0

k

and the diagonal mapping £ 0>l 0 show that
i — O

8.1 is satisfied.
Another example is provided by the differential, graded,

augmented algebras of Cartan [8]. In this case, X is an
augmented chain complex (i.e. a module over E (à, — 1), see § 7),
and a chain mapping p: X ® XX defines an algebra structure
in A.
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