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QUADRIGS IN A UNITARY SPACE

by Ali R. Amir-Moéz

(Reçu le 10 décembre 1960)

The study of quadratic forms treats quadrics with centers
at the origin. Other quadrics with or without a center are also

of some interest. In this paper we shall study the analogues of
what was done in [1] for quadrics in an ^-dimensional complex
unitary space. There are facts in the complex case which are
not found in the real case.

1. Definitions and notations: Let A be an (n + 1) —- by

— (n + 1) Hermitian matrix and ^ e En, a unitary space of
dimension n. Here ^ (x±, xn) and to corresponds the
homogeneous form E, — (aq, xn, 1). We shall use E, for both
forms whenever there is no confusion. It is convenient to
define Q to be the n — by — n matrix obtained by eliminating
the last row and the last column of A. We consider complex
quadrics that can be written in the form (A£, £) 0, where
E, (#!, xn, 1). For example

axx -f byy + hxy + hxy -f- px -|- px + qy -p qy -f d ^ 0

can be written as

The choice of a Hermitian matrix has been made in order that
the quadrics in certain cases can be expressed geometrically.
As an example we discuss the sphere | Ç — a | r, where
oc g En, a is fixed, r is a positive number, and \ is variable. This
sphere is written as

(1. 1) (5 — a, I — a) r2
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Let £ (xx, xn) and a (a,, an). Then (1. 1) can be

written as

(x1...xrl 1) \ /*'\

\ -\ai -anYJaiai—rJ
n /

\ 1 / =0.
A direction S in a unitary space is defined to be the difference

of two vectors. Thus when two vectors £, and y) are expressed
in homogeneous form, the homogeneous form of S is
S (/,, Zn, 0).

We shall define a complex straight line to be of the form

E 7) + t8

where Ç, rj e En, S is a complex direction, and t is a complex
variable. For convenience we shall denote the variable vector £

by (#!, xn, 1), the fixed vector y] by (hx, Än, 1), and S by
(Z1? Zn, 0), but whenever it is convenient we use the notations

E (#i, ^n) and S (lly Zn).

2. Intersection of a line and a quadric: The set of equations

r (as, « o

I Ç 7) -f- £S

gives the intersection of the quadric and the line. This set

implies

(2. 1) (Ay), Y}) -j-t (An, S) -f t (AS, 7]) + it (AS, S) 0

It is easily seen that (AS, S) (QS, S). We shall denote the real
part of a complex number 2 by Rz. Then (2. 1) can be written as

(2. 2) (QS, S) tt F 2R [(Ayj, S) t] -f (At], yj) - 0

The following cases may occur:

(a) Let (QS, S) ^ 0. Then the image of all solutions of (2. 2)
in the complex plane is a circle. That is, t satisfies the
equation

\t + (A7], S) 12

_
I (Ari, 8)

(QS, 8) (QS, 8)

(A 7), 7j)

\Q8, 8)
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In this case we call the intersection circular. The vectof
corresponding to the center of this circle plays the part or
the midpoint in the real case. We shall call this point the
mean of the intersections. Note that the image of t may
be imaginary, but its center has always a real image.

(b) Let (Q8, 8) 0, but (At), 8) ^ 0. Then (2. 2) is of the
form

(2.3) 2Ä[(Ar),8)t] + (Ay;, Y]) 0

and the image of the solutions of (2. 3) in the complex plane
is a line. In this case we call the intersection linear.

(c) Let (Q8, 8) 0, (At), 8) 0, and (Ayj, y]) ^ 0. Then the
line does not intersect the quadric.

(d) Let (2.2) be an identity. Then the line lies on the
quadric.

3. Properties of solutions of (2. 2): When (Q8, 8) ^ 0, then
(2. 2) can be written as

{Q A\ f7
(Av}' ^ t + (Ay5 S)

f I
(Ay)' ^ o(3- » + HQS, 8) +

(QM) ' + iQp) - 0 •

The following facts are true for the solutions of (3. 1):

I.
j (A 7), 7)) I

max I t I mm | t =m J ^
'

j
•

II. There is a solution t' of (3. 1) for which

I t' I2 max I t I min | t |

III. To any solution of (3. 1) there corresponds a unique
solution t2 of (3. 1) such that

I q I I «2 I K I2 •

IV. For any tx and t2 satisfying III, there are two other solu¬

tions t3 and £4 of (3. 1) which also satisfy III, and

(1/2) (q + q -f t3 q) — |q •
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V. The four solutions mentioned in IV satisfy

V4 I ' I2

/ ji :1

1 (At), 8) I2
__

(A% 7])

(QS, S)2 (QM)

a special case of theorem 1 of [2].

VI. There are two real solutions of (3. 1), say h± and h2, and

two pure imaginary solutions, say ik± and ik2 such that

(At,, 7))
hx h2 k± h2

IQ 8, 8) '

and

^ _i_ h* j_ k1 + k2 - 4 [KAliili! __/q + n2 4- Ki + Kt « 4
1^ S)2 a)j

In the case of linear intersection we also have some

interesting facts about the solutions of

(3.2) 2JR[(Ay), 8) t] + (Atj, tq) 0

VII. This equation has a unique real solution ft, and a unique

pure imaginary solution ift, which satisfy

1,1 1

h2 A:2 min | £ |2

VIII. There is a solution t of (3. 2) such that

_l_ 1

_ Vj[
\h\ + |Ä| "" \t\

IX. There is a solution t of (3. 2) such that

I h I2 + I k I2 4 I t I2

X. For any solution t± of (3. 2) there is a solution t2 of (3. 2)
such that

1 l l
I Q I2 I h I2 min 1112

4. Theorem: The locus of the means of intersections of a

quadric with all lines of fixed direction S is a plane, i.e., satisfies
a first degree equation in xn. We call this plane a
diametral plane corresponding to S.
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Proof: Let (Q8, S) 7^ 0 so that there will be a circular
intersection [see 2 (a)], and let yj be the mean of intersections. Then
£ yj + £8 is a line which cuts (A£, E) 0 in a circular
intersection with mean y). In this case we have (Ay), 8) 0. Thus
the locus of y) is the plane (AÇ, 8) 0.

5. Corollary: If the diametral plane is orthogonal to the
corresponding direction 8, then 8 is an eigenvector of Q. In
this case the diametral plane is called the plane of symmetry
corresponding to 8.

Proof : We easily see that (AÇ, 8) 0 is equivalent to
(A8, Ç) 0, and can be written as (QS, E) + M — 0, where M
is a constant. Since the direction normal to (AS, Ç) 0 is QS,
and S lies in this direction we have

QS k8

which proves the corollary.

6. Centers of a quadric: A vector rj (x10, xno) is a

center of a quadric (A£, £) 0 if y) is the mean of circular
intersections of all lines through it.

For the center let

(6. 1) £ 75 + t8

be aline through yj, where 8 — (ll9 ln) (xx — x10,..., xn — xno).

The intersection of (6. 1) and (A£, |) 0 is obtained from the
equation

(QS, S) ft + 2R [t (At), S)] + (At), t)) 0 (QS, S) ^ 0

[see 2 (a)]. For y) to be the mean of intersections we must have

(6.2) (Ay) S) 0

Suppose the matrix A has the form

A / hn :..hin pl

h-nn

P, ••• PndJ
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Then (6. 2) can be written as

(*10 "*«0 4)
K

255

\ ^ li ^

\ U /
n'" ^nn Pn

V - Pnn d J
This implies that

a (P\ + 1 ^le ^iO ' Pn "h ^Lii=i ^in xiO)

is orthogonal to S for all £ satisfying (A£, £) 0. Either a is

fixed and (A!;, £) 0 is a double plane orthogonal to a at 7],

or a 0, that is,

Pj + ]C?=i fyi ^io 0
3 i 1-' 71 '

In other words (x10, xn0) is the solution of

(x% x„) / h h \VI n) n1;L...nin

n • • • ^nn

V^i n / (0 0)

The problem of existence of a center is the problem of n linear
equations. We shall leave the discussion of this problem to
the reader.

7. Vertex of a quadric: We shall only discuss the case when
the quadric has no center. A necessary condition for lack of
center is that the rank of Q be less than n. Of course this
condition is not sufficient.

Let oc1? ak be orthonormal eigenvectors of Q corresponding
to nonzero eigenvalues of Q. Let

(7.1) (Aoq.Ç) 0 i= 1 Ä

be planes of symmetry corresponding to oq. It is well known
that the quadratic terms of the quadric constitute a linear combination

of terms, each of which is the product of the first degree
part of (Aoq, £) and its cojugate. Thus the k + 1 equations

(A£, Ç) 0 (Aoq, I) 0 £ 1, Ä
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give vertices. We leave the discussion of different cases to the
reader.

8. Tangent plane: The idea of tangency is slightly different
from the real case. A line £ 7) + t<$ is said to be tangent to a

quadric (A£, — 0 if its circular intersection with the quadric
is a single point, namely its mean. If a line changes in such a

way that it remains tangent to a quadric at a fixed point, then
its locus is a plane called the tangent plane.

To prove this fact, i.e., to obtain this tangent plane we shall
study (2. 2). For the circular intersection to be only its mean
we must have

1 (A?), 8) I2 - (AY), ti) (Q8, 8)

(Q&, S)

[see 2 (a)]. Here rj is on the quadric, so that (Atj, rj) 0.

Therefore for tangency we have

(8. 1) (ATJ, 8) 0

Let 7] (xl0, #n0), S (Zx, Zn), and the matrix A be the
same as in 6. Then (8. 1) implies that

(Äll xi0 + "• + Kn xn0 + Pv) ~l\ + •** + Chin x10 +

+ - + Kn xn0 + Pv) \ °-

This implies that the vector

a (h{{ xiQ + + kin xn0 -f /q, hin x10 -f h2n #2{) +

+ ••• + Kn xn0 + Pr)

is perpendicular to S and therefore to the locus of S. Thus S

is in a plane and the tangent plane is (Ay), Ç) 0.

9. Pole and polar: Let y] (x1Q, xn0) be fixed and S any
direction. Then

(9.1) 5 v) + t8

is any line through yj. The intersection of this line and

(A£, £) 0 is obtained by (2. 2). Let (Q§, 8) ^ 0 so that we
have circular intersections.



QUADRICS IN A UNITARY SPACE

For any ^ and £2 satisfying

$ 7)-MS, (A?,5) 0

257

and corresponding tx and t2 of (2. 2) for which | tx | | t2

[see 3 III], there is a point 2, called the harmonic cojugate of yj

with respect to and £2, so that the parameter t corresponding

to this £ satisfies the harmonic relation

JL - JL 4- J_
\ t \ I tx [ I t2 [

This implies that the image of t in the complex plane is the polar
of the origin with respect to the image of t0l defining the
intersection of the line ^ y] t0 8 and (A£, £) — 0. Thus

t _ (A^ £(A(At,, 8)

If (Ay], 8) — 0, then the polar is at infinity. Substituting this t

in (9. 1) we get

(AT], SK= (AT), S) 7] — (A7], 7]) S

From the inner product of both sides with Ayj we get

(A7], 8) (A7], Ç) o

and since (Ay), 8) ^ Owe get (Ay], £) 0, the equation of a plane
called the polar of vj with respect to the quadric.

Note that if yj is on the quadric, then this plane becomes the
tangent plane.

In this paper we have discussed only the properties of a

quadric in any location. The problem of transformation to the
most convenient position is well known, and we made use of it
in section 7.
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