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ON THE ASYMPTOTIC BEHAVIOR OF THE
SUM OF A “ NON-HARMONIC FOURIER SERIES ”)

by P. M. ANSELONE

1. Introduction. This paper is concerned primarily with the
asymptotic behavior as t— oo of a function of the form

< i ¢, = a,+ib,,
20 =;§mcne">@°’{zn O
where
x, <0, Vn, (2)
M = sup|z,—2nni| <In2. (3)

n

Conditions (2) and (3) will be generalized later. Note that if
z, = 2nnt, ¥nr, then (1) is a Fourier series. In particular, a
series of the type (1) may occur as the residue evaluation (Heavi-
~ side expansion) of the inverse Laplace transform integral

E+in
o) =1lim— | @(2)e*dz, t=20, >0, (4

n—>oo &ML g—iy

if the transform ¢(z) is regular for Re(z) 0. In fact, such an
example, which will be discussed later, motivated the present
study.

Since |e™ | = ¢™ and z,<0, it may seem plausible that
@(t) - 0 as t > oo or, at least, that ¢(¢) i1s bounded. However,
Rudin [6], constructed an example in which the series in (1)
converges uniformly on each finite interval and ¢(¢) is unbounded.
In this paper we give conditions under which ¢(¢) — 0 in certain
mean-square senses as { — oo. Since the proof involves Hilbert

1) Sponsored by the Mathematics Research Center, United States Army, Madison,
‘Wisconsin under Contract No.: DA-11-022-ORD-2059.
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space concepts, a resumé of some of the relevant theory i1s
presented next.

2. Biorthonormal Sequences. Let H be a complex separable
Hilbert space with the norm || | and the inner product ( , ).
A subset E of H is complete if the set of finite linear combinations
of elements in £ is dense in /. An equivalent condition 1s that

(f,9) =0  VygeE=f = 0.

Let {h,} be an orthonormal sequence in H, i.e., (hy, h,) = Opmp-
‘Recall that a series Zy,h, converges to some h € H iff 2 |y, [? < o0,

n n

in which case y, = (&, h,) and

h=Y(,h)h,, | (5)
[h]? = Y[, h)[*. (6)

If {h,} is complete, then (5) and (6) hold for all # € H and (6) is
Parseval’s identity.

Let {f,} and {g,} be biorthonormal sequences in H, i.e.,
(fmv gn) = 5mn- It h = Z?nfm then Yn = (h7 gn) and7 hence?

ho=73% (h,g)f (7)

If {g,} is complete and the series X (k, g,)f, converges for a

particular 2 € H, then (7) holds since
(h_Z(ha gn)fna gm)=07 Vm.

The same statements are valid with {f,} and {g,} interchanged.

Lemma 1. Let {f,} be a sequence and {h,} a complete
orthonormal sequence in H. * Suppose there exists a constant 6,
0 = 6<1, such that

| Xnt=f) P <X 1017, (8)

neF

1) Cf. Tayvror [7], pp. 118-119.
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for each finite set F' and arbitrary constants y,, n € F. Then:

{fs} 1s complete; there exists a unique complete sequence {g,}
in H such that {f,} and {g,} are biorthonormal;

h=Y (h,g)f =Y, 1),

VheH ; 9)
L+ R <Y1, )P SU-02|h|> VheH; (10)
A=02 |h > <X Ih, f)PSA+02|h|> VheH. (11)

This fundamental result was proved for real L,(«, f) by Paley
and Wiener [4; pg. 100]. It was extended to a complex separable
Hilbert space by Duffin and Eachus [3]. An independent proof
was given by Nagy [5; pp. 208-210].

Lemma 2. Assume the hypotheses of Lemma 1. Then a
series Xy,f, converges to some h € H iff 2|y, |?< o0, in which

case y, = (h, g,) and

A+ 2 [r|P <X In> s1-072| k]2

(12)
Proof. 1f h = Zvy,h,, then y,

(h, g,), so that (10) implies
(12) and Z |y, [2P< 0. If |y, [2< oo, then, also by (10),

A+ X vfu|? £ ZF L7 12,

neF

F finite,

so that Xy,f, converges by the Cauchy criterion.

Lemma 3. 1f (3) holds, then the hypotheses in Lemmas 1
and 2 are satisfied with H = L,(0, 1), |

t =
0,

b

hn(t = eint, fn(t) = eznta { 1 , (13)

and 0 = M —1.

S o©
lIA

+ =

Proof. Paley and Wiener [4; pp. 108-109] proved the analo-
gous result for L,(—n, n) with M <z~ ? and 6 = Mn=2

Duffin




In2

and Eachus [3] extended that result by taking M < — and

0 = ¢”™ — 1. Their proof goes over without essential change
to the present situation. |

3. The Asymptotic Behavior of ¢(t).

Theorem 1. Assume (2) and (3). Then the series in (1)
converges in L,(0, s) for each s> 0 iff

Yle,* < oo, (14)
in which case
stz
[ lo@®?dt >0, ass— oo, (15)
for each fixed >0, and
1° 5
;Mw@lm%O, as s > . (16)
0

Proof. According to Lemma 3, Lemmas 1 and 2 are appli-
cable. Consider (1) in the form

0<t<1,
(17)

p(t+k) = @ () = ;C” e £, (1), {k =0,1, ...

By Lemma 2, this series convergesin L, (0, 1) for a particular £ iff
Yle, e P =Y e, Pe™ < o, (18)
in which case

A+ 2o P Y e, P =1=0"2 o ]?. (19

Since x,<0, (18) for k = 0 implies (18) for all k. Therefore, the
series in (17) converges in Ly(0, 27) for every k iff (14) is satisfied.
This justifies the first assertion of the theorem.
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Now assume (14). Since z,<0, the series in (18) converges
uniformly with respect to k. It follows that

Sle e >0  ask > . (20)

By (19) and (20),

“qok||—+0, as k — oo, (21)
which implies (15) and (16).
To facilitate the next theorem, let ||| ||| denote the norm for
Ly(0, o0).

Theorem 2. Assume (2) and (3). Then these three condi-
tions are equivalent: (4) the series in (1) converges in Ly(0, s)

for each s >0, and ¢ € Ly(0, o); (B) the series in (1) converges in
Ly(0, o0);

2

ZICnI

n T Xp

< 0. (22)

If (A), (B) or (22) is satisfied, then
|2

=2(1-0)*lllelll*. (23

3 |
—— (14+6)2 2 < .
s (O Hlle P S T

Proof. By (2) and (3),
—In2<x,<0, . Vn. (24)

Hence, (22) implies (14). In view of Theorem 1, we can assume
without loss of generality in this proof that (14) 1s satisfied and,
hence, that the series in (1) converges to ¢(¢) in L,(0, s) for each
s>0.

Let

e ll2 = 1o 2dt, (25)
0

whether finite or infinite. By (17), (19) and (25),

e lll* =X lell*, (26)
k=0

T

P T T T T R




|2

| c

n
1 —e*"n

1+ 2 lllelll* = X S(A=-072lell*. @7

N

For s # 0,

is positive, monotone increasing, and tends to 1

as s — 0. Hence, by (24),

3 1 —e™n
<
4ln2 — X,

<2, Vn. (28)

This inequality and (27) imply (23). Therefore, pe Ly(0,00) 1ff
(22) holds. This proves the equivalence of (4) and (22).
For each finite set F of integers, let

oF (1) = Y ¢, e, 120, (29)

neF

Since ¢ is a special case of ¢, (23) yields

3 Nt
2 qsorer s 3 Lo

<2(1-0)"2 Fz.
An2 LT = ( )" “ o™ [l

It follows by means of the Cauchy criterion that (B) and (22)
are equivalent. Thus, the theorem is proved.

As indicated in the foregoing proof, (22) implies (14). How-
ever, (14) does not imply (22). To see this, let x, - 0Oasn — co.
Thus, the series in (1) may converge in L,(0, s) for each s >0, but
@ ¢ Ly(0, o).

The following elementary theorem is included for comparison
with Theorem 2.

Theorem 3. 1If (2) holds and

Z\/IC-L < o, 61

then the series in (1) converges in L,(0, o) and

| ¢ |

1
\/E‘,,‘: J =%

L’Enseignement mathém., t. X, fasc. 3-4. 16

Helll <

(32)
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Proof. Assume (31). Then, by (1), (25) and the Cauchy-
Schwarz inequality,

o 1112 <zz|c,,,c,,u ot gl gy

1
2

ol zzlcmcn|(5e2 . dr) <je”“‘dt) ,
m n 0 0

1 \*/ 1 \* g
ol éZZIcmcnl<_2x ) (_Zx) - [z(_';;')%] ,

which implies the desired results.

Since (31) implies (22), the first statement of Theorem 3
could have been obtained also from Theorem 2. Since (22) does
not imply (31), Theorem 2 contains a stronger result.

4. Generalizations. Results similar to the above can be
obtained under more general conditions. In place of (2) and
(3), consider

x, <&  wyn, (33)

) Aln2
sup | z,— ¢ —Ani | < —, (34)
2n

n

for some real ¢ and some A>0. The changes of variable

At 2r

th=—, (%) =e o), ZZ=*A—(Z,,-—€), (35)

yield (1), (2) and (3) in terms of o*(t*) and z, = z,+1iy,. Thus,
the theorems of Section 3 apply. By means of (35), the state-
ments of these theorems can be expressed in terms of ¢(¢) and
z,. Since only substitutions are involved, we omit further
details.

Consider (3) or (34) with sup replaced by lim sup.

n—oo

This case can be treated by expressing (1) in the form

p() = 9" OD+0" (1), (36)
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where

N
o)=Y e, o @®=Y ¢, (37

n=—N [n| >N

and (3) or (34) holds with sup replaced by sup.

|n|>N

Then all of the above results apply to ¢”(t). Furthermore,
since ¢’(t) is a finite sum, the series for ¢(t) and ¢”(¢) have the
same convergence properties.

Finally, [n2 can be replaced by 2[r2 in (3). Under this
weaker condition, Lemma 3 is valid for H = L,(-%, %) and
0 = e/2-1. Then the reasoning used in the proofs of Theorems
1 and 2 can be applied to the intervals (k — %, k+3%) to derive
similar results. Furthermore, the case of (33) and (34) with the
right member of (34) doubled can be handled. Since notational
complications are involved, we have preferred to deal with the
conditions (3) and (34) as they stand.

5. An Example. Consider the difference-integral equation

p(—e(t+1) = [ K(s)o(—s)ds, t =0, (38
2y

where K(s), —1=s =1, and o¢(t), —1=t< oo, are complex
and continuous. This equation was investigated by Anselone
and Bueckner[1,2]. The Laplace transform of ¢(), 0 < t< oo,
18

LA

6@ = G (39)

where
1

A(2) = [ e 20K (s5) p () dids—e* [ e (1) dt, (40)
-1 -1

1

V(z) = 1—¢— [ e K()ds. (41)

==

An argument involving Rouchés theorem proves that: for some
m, ¥(z) has simple zeros z,, |n| = m, such that z, — 2zni — 0
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as |n| — oo; and ¥(z) has only a finite number of other
zeros z with Re(z) = £, where ¢ is any real number. - By means
of (4), ¢(t) can be expressed in the form

et =o'+ Y ¢, t=0. (42)
[n[2m

If ¢(z) 1s regular for Re(z) = 0, then ¢’ € L,(0, o) and, by
Theorem 1,
stz

[ le@®|*>dt >0 as s — o0,

for each fixed 7>0. For further details, see the references
cited.
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