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¢! (g(2)), z € Ty, is mapped injectively into ¥ by £, hence dim (g1 (g(2)) <
dim Y. Thus we obtain the inequalities

(*) dim T, <dim A-+dim Y<dim X—1.

Now we shall see that dim 7, = dim X—1. Therefore we have equality
in (*), hence dim X—dim Y = dim 44+1. We obtain also dim $, =
dim S = dim 4, hence S, = S = 4, since A is irreducible; moreover,

dim {g~! (a)) = dim Y for every a € 4, consequently f (a) = f(g~ (@)=Y

In order to show that dim T, = dim X—1, we use the following
theorem due to Grauert and Remmert [5] ( a proof was also given by
Kerner [7]):

Let X be a complex manifold, Z a normal complex space, K an analytic
set in Z with codim K>2, t : Z— X a holomorphic map such that | Z—K
is locally biholomorphic. Then 7 is locally biholomorphic.

Now assume first that Gy is a normal complex subspace of XX Y. The

holomorphic map }v‘_ G7— X is locally biholomorphic in a point { € G5 if

and only if (e T :;f"l (S). Hence, by the theorem of Grauert and Rem-
mert, 7 is puredimensional and dim 7 = dim X—1. If G7 is not normal,

we take a normalization (C~? v) of Gy and look at ;70 v :NG——>X and

~

= ( f @ v) 1 (S) instead of f and T. We see then that TlS puredimensional

with dim T = dim X— 1, but then it follows that v ( T) = T has the same
properties.

Remark. 1If Y is not compact, then f is always a holomorphic map
under the hypothesis of Theorem 3 since f (a) is compact for a € A. If the
assumption that X be a complex manifold is dropped, then both assertions
of Theorem 3 become false as can be shown by examples.

5. MAXIMAL MEROMORPHIC MAPPINGS

All complex spaces in this section are irreducible. Before we state the
problem we give the necessary definitions.
Letf: X ~ Y be weakly holomorphic and not empty. The rank rk f of f

~ is by definition the global rank of the holomorphic mapping f G,—7,1ie,
rk /' = sup codim, f (f (2)).

zer
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For two meromorphic mappings f: X—Y and f, : X—Y, we always

have rk [f, fo]>max { 1k f, 1k f;, }. We say that f;, depends on f, if 1k f =
rk [ f, fol. If f, depends on f and f depends on f;,, we say that f, is related
to f. Then clearly rk f = rk f,.

Letf: X = Yand f, : X B Y, be given. Suppose that there exists a mero-

morphic mapping a: Y—Y, such that the meromorphic product o A f is

defined and f, = aAf. Then we say that f majorizes f,. If this is the case,

fo depends on f([15]).
If f: X— Yis surjective and if f majorizes every meromorphic mapping g

dependent on f, f is called meromorphically maximal or m— maximal.
Let us now consider the following problem:
Given f, : X—Y,, is it possible to find a meromorphic mapping

f, : X— Y, such that /, is related to f; and f; is m-maximal ? If possible, the

pair ( f;, Y,) is called a meromorphic base or an m — base with respect to f,.

Proposition 14. If f, : X—Y, 1s proper, then an m-base with respect
to f, exists. "

We give a sketch of the proof (compare [15]).

Since f, is proper, f, (X) = Y, is an irreducible rk f, — dimensional
analytic set in Y, ; there is a surjective meromorphic mapping fo:X =y Y,

Yo (. Y,. : : ; ..

such that f, == [ YO o 1y (I Yols the inclusion map Y,— Y, ) fo1s pro-
0 0

per by Proposition 10, moreover it is surjective and related to f,. Now, a

complex m-base with respect to f is also a complex m-base with respect
to f,. Therefore we can suppose that f, is surjective.

We consider the class § of those surjective meromorphic mappings of
X which are dependent on f,, and majorize f,. If (f: X — Y) € §, there exists

a unique surjective meromorphic mapping o, : ¥— Y, such that f, = o, Af.

This implies that f'is related to f, and, by Proposition 10, that / and o, are
proper. We have rk f= dim Y, rk o, = dim Y, = 1k f,, 1k / = 1k f,,
hence dim Y = dim Y, = rk a,. Thus (Y, «,, ¥,) is a “ meromorphic
covering ” of Y, with a well defined number n (f) of sheets. The n (f),
fe &, have a finite upper bound: If not, one can show that there exists a
point y, € Y, such that /5 '(»,) has infinitely many connected components,
but this is impossible since f, is proper.
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Let (f,: X»>Y)e§ be such that n(f) is maximal. We claim that

(f.,, Y,) is an m-base with respect to fo. Suppose that f; : X —~ Y, depends

on f,, we have to show that f; majorizes f;. The meromorphic j\u'ncti.on
1f.f]: X=Y,x Y, is proper (Proposition 10) and rk [f,/i] = 1k f, =

rk f,, therefore [ £, f;1(X) = Y, is a 1k f; — dimensional analytic subset
of Y,xY,. There is a meromorphic mapping fi: X —+ Y, such that

[£,f] =iof, where i: Y;— Y,x ¥;; f; is surjective, proper and related

Yo x Yo
!

T L

2

B{ ’Y,

AN

to f,. Let n, and n; be the projections from Y X ¥; onto Y, and Y, set
B, = m, 01, f; = m o i,respectively. We have f; = f o f{, hence f; major-
izes f.. The holomorphic mapping 7, 0 i = f3, 1s surjective and, by Proposi-
. tion 10, proper. The meromorphic product or, AP is defined since f; is
surjective; we have f, = (x; AB) A fi, hence f; majorizes f, and, con-
sequently, f; € & Then n (f;) = n(f,) since f; majorizes f,, thus n (f;) =
" n (f) since n (f,) is maximal. It follows that the number of sheets of the
- covering (Y,,B,, Y,) equals 1, and this implies that f; is a bimeromorphic map-

ping. Now f, =B;0f; = B,0(B; A1) = (B,0831) Af. Hence f, majorizes f;.
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We give, without proof (see [15]) a more general result in this direction.
Theorem 4. Let f, : X: Y, be a meromorphic mapping and 4 an
irreducible analytic set in X such that the holomorphic correspondence
ay = fo | 4 : A Y,
has at least one irreducible component ay: A—k> Y, which is proper and

satisfies rk a, = 1k f;. Then there exists £, : X— Y, such that (£, ¥,) is an

m-base with respect to f,.
By definition, for f: X— Y a point x, € X is a point of indeterminacy

of degree k, if dim f(x,) = k, and a point of indeterminacy of maximal
degree, if dim f (x,) = rk f.

Let now the set 4 in Theorem 4 consist of one point x,. Then
ay = /o [ {x0}: {x0 }—k> Y, 1s a proper holomorphic correspondence and

rk fo | { xo } = 1k ap = dim f (xo)<<tk f;. The hypothesis of the theorem

means, in this case, that dim f, (x,) = rk f,; this implies ([15]) that

fo (x0) = fo (x). We obtain the following specialization of Theorem 4:
Let f, : X— Y, be a meromorphic mapping with a point of indeter-

m

minacy of maximal degree. Then there exists an m-base with respect to f;.

Finally we give applications of Proposition 14 and Theorem 4. We consider
meromorphic functions defined on the complex space X. These are mero-
morphic mappings ¢: X—:IP1 such that ¢ (X) does not reduce to the

point oo of P;. The set of all meromorphic functions on X form a field
I (X). Let ¢4, ... ¢, be elements of W (X). We say that ¢,, ..., 1S a
system of independent meromorphic functions if for the meromorphic mapping
O = [@1; . 0] 1 X 5P X XPy = P’ we have rk ® = k. There are

always maximal systems of independent meromorphic functions on X; the
length k of such a system is uniquely determined with & < dim X.

Let now X be a compact complex space. As a first application we obtain
the theorem of Chow-Thimm [4], [20] (see also [10]):

The field M (X) of meromorphic functions on an irreducible compact
complex space X is isomorphic to a finite algebraic extension of a field of
rational functions.

Proof. Choose a maximal system ¢, ..., ¢, of independent mero-
morphic functions on X and let @ be defined as above. @ is proper since X
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is compact, thus we can apply Proposition 14. Hence there exists an m-base
(P, Y,) with respect to ¢ and there is a meromorphic mapping o«: YS;:P{‘

such that @ = o, A®,. If ¢ e M (X), we have 1k & = 1k [P, ¢] since the
system @y, ..., @, is maximal, therefore ¢

Y depends on @. So @, majorizes every me-

S romorphic function ¢ on X, i.e., there is

a meromorphic function o, : YS—H:P1 such

@3 As that @ = «, A®@,. It is easily seen that
the assignment @2, gives an ISOMOr-
phism from M (X) onto M (Y). Now (¥,

(]J:D k o, P¥)is a meromorphic covering of Pf;

i qu if n is its number of sheets, then every
meromorphic function « on Y, satisfies
an equation

=Y o 4 (By £ 2 o (b, 09) = 0,

] where b, € M (P}) (v = 1, ..., n). This im-
v plies that 9t (Y,) is isomorphic to a finite

L algebraic extension of MM(PY). But M(PH)

is isomorphic to the field C (zy, ... z;) of

he rational functions of k& complex variables. Hence we obtain an iso-
morphism of I (X) with the desired properties.

As another application we sketch a proof of the following statement:

Let @ : X— Y be a meromorphic mapping with a point of indeterminacy x,

m

of maximal degree. Then the field My (X) of meromorphic functions on X
depending on @ is isomorphic to a finite algebraic extension of a field of
rational functions.

By the special case of Theorem 4 there exists an m-base (., Y,) with
respect to @. The meromorphic mapping @, : X ~ Y, majorizes every

¢ €My (X); if ¢ = a,nP,, then the assignment @'—z, gives again an
isomorphism My (X) = W (Y,). The point x, is also a point of indeter-
~ minacy of maximal degree for @; since @; depends on &, (see [15]), hence

D, (xy) = &, (X) = Y, is compact. Now we can apply the theorem of
Chow-Thimm, and we obtain the assertion.

Remark. In the case where ¥ = P{ and & is the junction of k mero-
morphic functions on X, the statement is a known theorem of Thimm [18],
~ [19]. A proof of this theorem was also given by Remmert [12].
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