6. The Atiyah-Hodge theorem

Objekttyp:  Chapter

Zeitschrift:  L'Enseignement Mathématique

Band (Jahr): 14 (1968)

Heft 1: L'ENSEIGNEMENT MATHEMATIQUE

PDF erstellt am: 25.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



— 86 —

where f 1s the meromorphic function determined by s, by the procedure
described just before Th. 4.1.

Now let X be a compact submanifold of P* and consider hyperplanes
H, in P", given in homogeneous coordinates z,, ..., z, by equations

n

Ye¢;z; = Owhere ¢ = (cg, ... ,¢,) # 0.
0

Theorem 5.2. There is an open dense set Q in C"*! such that if
¢ = (cg, ..., ¢,) € Q, the hyperplane section D, = H, n X is a non-singular
analytic subset of X.

The proof is omitted here.

Let D = H n X be a non-singular hyperplane section of X. To D is
then associated a positive line bundle F on X (see Sect. 4). By Kodaira’s
vanishing theorem there is a k, such that

HY(X,Q?@F =0, (yq=1,yk=k).
Using the isomorphism in Lemma 5.1, we have therefore proved.

Lemma 5.3. If D is a non-singular hyperplane section of a compact
submanifold X of P", then there exists k, such that

HY(X,Q"(k,D)) = 0, (¢q =1, vk =k).

6. THE ATIYAH-HODGE THEOREM

We first recall two well-known theorems.

Let X be a paracompact C” manifold and let &7 be the sheaf of germs
of C* p-forms on X (p=0, 1, ...).

Then the sequence

0->C g0 4 gt 4 g . (6.1)
is exact (Poincaré’s lemma), and
HY(X,6%) =0, (ygq=1,yp=0), (6.2)

because the &7 are fine sheaves, i.e. they have partitions of unity. From
(6.1) we get the sequence

0->T(X,6)>TX,6YH) — ...,

which need not be exact. Put
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Ker (I' (X, 67) - I'(X,67"Y))
Im(F(X, 671 - I'(X,67)

with &1 = 0. Then one has the following theorem of de Rham:

(p20), (6.3)

H? (&) =

Theorem 6.1. There are natural isomorphisms
H?(X,C) ~ H?(&), (p=0).

If X is a Stein manifold and QP the sheaf of germs of holomorphic
p-forms on X (p=0, 1, ...), then the sequence

0->C L4 o4 07— ... (6.4)
is exact (Gnothendieck’s lemma), and
HY(X,Q%) =0, (yq=1,yp=0) (6.5)
(Cartan’s Theorem B). Put

Ker (I' (X, Q%) —» I'(X, Q7))
Im(I'(X, Q%) > T (X, Q)"

H?(Q) = (» = 0)

with Q~! = 0. Then one has the following theorem
Theorem 6.2. There are natural isomorphisms
H?(X,C) ~ H? (), (p=0).

Theorems 6.1 and 6.2 both follow if one applies the following lemma
to the exact sequences (6.1) and (6.4), respectively:

Lemma 6.3. Let X be a paracompact Hausdorff space and
0—-F [ F,% F, 2 . (6.6)
an exact sequence of sheaves of abelian groups, such that
HYX,F,) =0, (ygqz1,yp=0). (6.7)
Then there are natural isomorphisms
H?(X,F) ~XKerd,/imd,_,, (p=0),

where d, is the mapping I' (X, F,) > I' (X, F,.,) induced by (6.6) (with
F_,—0).

Proof. Put Z, = Kerd, < F,. Then the exactness of (6.6) gives short
exact sequences

f S ——
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O_)Zp'—l_)Fp—l_—)Zp_}O’ (p21), (6.8)

from which we get long exact sequences of cohomology groups, which
we write in part:

H(X,F, ) > H!(X,Z,)->H""'(X,Z,_,) > H""' (X,F,-,),
(g=0,p=1). (6.9)
When g > 1, we get from (6.7) and (6.9)
HY(X,Z,)~H"'(X,Z,.), (p=1).

Since F is isomorphic to Z,, we therefore have

HY(X,F) ~H""'(X,Z,) ~...~H' (X,Z,.), (p=1). (6.10)
When g = 0, (6.9) gives an exact sequence

rX,F,_)®'I'X,Z,)->H (X,Z,_{) >0,

and thus
Hl (X’Zp‘—l) >~ F(X,Fp._l)/lmd;_l = Kerd;/1n1d;_1 N

which together with (6.10) proves the lemma when p > 1.
To prove it for p = 0, we observe that the exact sequence

O-F =Z2y,->Fy,—>72, >0
gives an exact sequence

O—_)F(XaF)—)F(XaFO)ﬁ(Xz‘Zl)
and thus .
H°(X,F) = I'(X,F) ~Kerdy; = Kerdo/Imd~ ;.

Now let V' be a compact submanifold of P” and D a non-singular
~ hyperplane section of V. Then X = VV— D is imbedded as a closed sub-
~ manifold of C", and in particular it is a Stein manifold.
| Let Q7 (D) = QP (V, D) be the sheaf of germs of meromorphic p-forms
on V with poles only on D, p = 0, 1, .... Then we have a sequence (not

necessarily exact)

0->C —->Q°(D)‘ﬁ) QI(D)‘_i_i

Define
H? = Kerd ,/Imd,_,, (p=0),

- where d’, is the-induced mapping I' (V, Q7 (D)) - I" (V, @' (D)), (with
- Q7' (D) = 0). We shall prove the following theorem of Atiyah and Hodge:

I\
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Theorem 6.4. There are natural isomorphisms
H?(X,C)~H?, (p=0).

Proof. Let &% (D) = &% (V, D) be the sheaf on V¥, which is defined by
the presheaf that to every open subset U of V associates the module of C”~
p-forms on U — D. Then we have a commutative diagram

0 - Q°(D) 40 Q' (D) 91 ...
! ! (6.11)
0—&°(D) % & (D) 4 ...,

where the vertical mappings are the inclusions.

For every p, we can regard Q7 (D) as the direct limit of Q” (k, D)
= Q? (V, k, D) as k - oo. Now, by Lemma 5.3, there is a k, such that
HY(V, Q" (k, D)) = 0 for ¢ > 1 and k > k,. Hence we can conclude that

Hq(V, QP(D)) =0, (yg=1,yp=0). (6.12)
We also have
Hi(V,67(D) = 0, (ya=1,vp=0), (6.13)

because &7 (D) are fine sheaves.
From (6.11) we get a diagram

0 - I'(V,° (D)%, I'(V, Q" (D)4 ...

| ) ) ) (6.14)
0T (V,6°(D)%, I'(V,6" (D)4, ...

The cohomology groups of the upper row in (6.14) are H”, (p=0, 1, s
and those of the lower row are the groups H” (&) in (6.3), because one can
obviously identify I' (V, 7 (D)) with I' (X, &F). In view of de Rham’s
theorem, it is therefore sufficient to prove that the vertical mappings in
(6.14) induce isomorphisms between the cohomology groups of the rows.

To do this, we will use the following theorem:

Theorem 6.5. Let X be a paracompact Hausdorff space and suppose
that two complexes & and &’ of sheaves over X are given, together with
mappings 4 such that the diagram

0916, 99 &, 41 &, — ...

hoJ h1y ha}
077 60T 81T 83 .. (6.13)




1s commutative. (The rows are not supposed to be exact, but we have
dd =0 and d'd = 0.)
Suppose further that

HY(X,&) = 0and H1(X,8,) =0, (yg = 1yk =20), (6.16)
and that for all £k > 0, 4 induces isomorphisms of the cohomology sheaves
he:Kerd'/Imd',_; - Kerd',/Imd',_, . (6.17)
Then it follows that % induces isomorphisms for all k > 0:
B Kerd’:/Imd':_, - Kerd'[Imd’; (6.18)

where d* and d'* are the mappings induced by d and d’ between the groups
of global sections of the given sheaves:

0->T(X,60) 5 T (X, 6 ) (X, 8D ...

} | ! (6.19)
0T (X,60)% I'(X,6)% I'(X,6)% ...

Proof of Theorem 6.5: Taking F = 0 in Lemma 6.3, we see that
exactness of a sequence

0—F, %

—

F, % .. (6.20)

—

together with the conditions (6.7) implies exactness of the sequence
0> I (X,Fo)% I'(X,F)°" ... (6.21)

With the help of the “ mapping cylinder ” construction we will reduce
the proof of Theorem 6.5 to an application of this fact. We define the sheaves
and mappings in (6.20) as follows (where we take &_,=0).

Fk - é(”k @gk_l; 5k(a,, a) — (dlka,, dk_la + ( —l)khka,) v

Since (6.7) follows from (6.16), it is enough to prove that the fact that
(6.17) are isomorphisms for all £ > 0 implies that (6.20) is exact, and
that the exactness of (6.21) implies that (6.18) are isomorphisms. But we
see that (6.21) is obtained from (6.19) by the same construction which lead
from (6.15) to (6.20). Thus the proof of Theorem 6.5 will be complete if we
apply the following lemma in one direction to (6.15) and (6.20) and in the
other direction to (6.19) and (6.21).

Lemma 6.6. Let (6.15) be any diagram of the type considered above
(with no condition (6.16) supposed) and such that (6.17) are isomorphisms,
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and let (6.20) be the corresponding sequence given by the above construc-
tion. Then (6.18) are isomorphisms if and only if (6.20) is exact.

Proof of Lemma 6.6. By straightforward calculation we see that
50 = 0. Clearly #, is injective if and only if B

(i) For every a' €&, and ae&,_, with d'a’ = 0 and ha’ = da there
exists b’ € &, with @’ = d'b’.
Similarly, A, _7 is surjective if and only if

(ii) For every be &,_,; with db = O there exist f'eé’,_; and ce &,
with d'f' = 0 and dc = b — hf".

Finally we want to express in a similar way the condition that (6.20) is

exact at F,. If a« € F, and 6o = 0, the condition is that « = oy for some

yeF,_,. To get rid of the signs we write o = ((—1)*""a,a) and

y = ((=1)*"' ¢/, ¢). Then the condition may be written:

(iii) For every a' € & and aec &,_, with d'a’ = 0 and ha' = da, there
exist ¢’ e &,_, and ce &,_, such that d'¢’ = &’ and dc = a—hc'.

Trivially, (iii) = (i). Taking ¢’ = 0 and a = b, we see that (iii) = (ii).
To complete the proof we will then assume that (i) and (ii) holds and prove
(iii).

Let @’ and a be as in (iii). From (i) we get '. Then d (a—hb") = da — ha'
=0 by hypothesis. Apply (ii) with b=a — hb’ and define ¢'=»b"—f". Then
dc¢ =d and a-hc’ = a—hb"'—hf' = dc, which completes the proof of
Theorem 6.5.

Continuation of the proof of Theorem 6.4. It only remains to prove
that we may take & = Q(V, D) and & = & (V, D) in Theorem 6.5. In
view of (6.12) and (6.13), it suffices to check that the mappings (6.17) are
isomorphisms for all £k > 0.

At any point of V' — D, both cohomologies are trivial, and thereis nothing
to prove. Thus it only remains to consider points in D. Let us choose a
neighbourhood U of such a point a and local coordinates (z4, ..., z,) in U
in such a way that U is the polycylinder given by | z; | < 1, (i=1, 2, ..., n),
U n D is the part of U where z; = 0, and a is the point where all z; = 0.
Now U — D = (E—{0}) X E""', where E is the open unit disk in C.
Since the second factor is contractible, the mapping (E—{0}) x E"~!
— E—{ 0} induces isomorphisms of #'* = Ker d'y/Imd’, .. Thus, by de

_ d
Rham’s theorem, #"* = 0 if k > 2, and it forms a basis for #’1. We claim
Z3
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that the same is true for #*=Kerd,/1md '._1-dince A is the natural inclusion,
this would complete the proof.
All forms considered in the sequel are meromorphic in U and have poles

0
at most on D. If y = Za; ..., dz;; A .. Adz, is a k-form, we setéZ
ZV
0d;,...; " 0
= Y g A Adz,. Thendy = Y dz, A —-.
aZv v=1 Zy
We also introduce the norm |y | = sup | 4;,...;, | . If y does not involve

n

dz,, we define 6y = > dz, A ¥ We will need the following lemma.
v=2 Zy

Lemma 6.8. 1If y is a k-form (k>1) not involving dz,, and if 6y = 0,
then there exists a form 9" not involving dz; and such that ¢y’ = y.
Proof of Lemma 6.8. We first suppose that y is a holomorphic. Then

we havey = ) z] B,and 0 = X z} § B, with convergence for |z, | < L.

v=>=0
Thus for any ¢ > 1 we have | §,| < C¢".

By the ordinary lemma in a polydisk, there exists f,” such that f,
= of,’. The mapping S, — f,’ is a mapping onto the Fréchet space of all
closed (k—1)-forms. Thus, by the open mapping theorem, we see that the
equation 68,” = f, has a solution £, with | 8, | << C’ ¢* on any smaller
polydisk P, (C’ being a constant which may depend on Thus

7 = > z,* B, is convergent in | z; | < —, which proves the lemma in the

>0 .
k

holomorphic case. In the general case we have y = Y z;~'y; with holo-
i=0
k

morphic forms y;. We apply the first case to the y; and get y' =) z,~ 'y,
i=0
which completes the proof of the lemma.

End of proof of Theorem 6.4. Let w be any k-form. Then we may write
w = dz; A d -+ f, where o« and f do not involve dz;. Suppose now that
dw = 0. This condition takes the form

0
dz, A da + dzy A a—'B— + o0f =0, (6.22)
Z

~ which implies that 6 = 0. By Lemma 6.8, we have f = 6f’ for some
~ (k—=1)-form p'.
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Now o takes the form |
w —df =dz; nao. (6.23)

We distinguish the two cases k > 1 and k = 1. In the first case we get
from (6.23)
le N\ (SOC/ - 0 s

which implies that da’ = 0. Since o’ is a form of type ¢ — 1 >1, we can apply
once again Lemma 6.8 and get o' = d«”. Thus dz; A o' = d(dz; &),
and we get w = d(f'+dz; Aa”). This proves that the cohomology under
consideration is trivial for £ > 1.

Finally, in the case k = 1, o’ is a meromorphic function, independent
of z,, ..., z,. Thus by (6.23), @ = dy for some y if and only if in the Laurent
expansion of o the coefficient of z; ™! is zero. Thus the cohomology in
dimension 1 is generated by z, ~! dz,, which completes the proof of Theo-
rem 6.4.

7. LEFSCHETZ’ THEOREM ON HYPERPLANE SECTIONS

The Lefschetz theorem in the slightly more general setting proved by
Andreotti and Frankel [1], is the following:

Theorem 7.1. Let V be a submanifold of P" of complex dimension d
and let D be a hyperplane section of V (not necessarily non-singular).
Then there are natural isomorphisms

H*(V,Z) ~ H'(D,Z), (ygq<d-1),
and a natural injection
H*™Y(V,Z) - H* (D, Z).

Proof. X =V — D is a Stein manifold, since it is imbedded as a closed
submanifold of C". Now one knows that

H*(V,D,Z) ~ H{(X,Z), (7.1)

where the ¢ indicates cohomology with compact support. On the other
hand, since X is a topological manifold of dimension 2 d, Poincaré duality
gives

H (X,Z) ~H,,_,(X,Z). (7.2)

Now we shall use the following theorem:
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