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TOURNAMENTS AND HADAMARD MATRICES

G. SZEKERES

the memory of J. Karamata

1. A Hadamard matrix (//-matrix) is a square orthogonal matrix with

all entries +1 or —1. Apart from the trivial cases 1 or 2, the order

of an //-matrix must be divisible by 4, and it is a famous yet unsolved

problem whether an //-matrix of order nexists for all m.

The construction of certain //-matrices can be achieved via tournaments.

A tournament ST
n

ST (uuun)is a complete directed graph consisting

of n nodes u1, un and one directed edge ut Uj for each pair of nodes. We

write Ui-^Uj and say that ut dominates Uj. N (STn) denotes the set of nodes

of STn. For every subset { vx,...,vk}of N (STn) we define

S(vu...,vk) { w eN(IT„); w -» ,i l, ...,fc},
S'(vu ...,vk) {w'eN(Srn);v^w',

The dual ST'n ST(u[,...,u'n) of STn is defined by the dominance rule

Ui Uj <=> Uj -> UI

An automorphism of 3Tn is a permutation n of its nodes which preserves
orientation, u^Uj <s> un{i)-*un{jy

In an earlier paper [3] we have considered the following:
Property Tk>m: For every subset { vu vk } c= N (5"„) of order k,

S(vl9...9vk) is at least of order m. A Tk nl tournament 2Tn has order

n > 2k (ra+1) — 1 ([3], Lemma 3). We shall call it extreme if its order is

exactly 2fc(m+l) — 1. It is easily seen that for every m there exists an
extreme T1>m tournament (of order 2m+1). We shall examine here the
existence of extreme T2>m tournaments of order 4m+3 for special values

of m. Interest in these tournaments stems from the fact that they supply
/^-matrices of order 4m+4. In fact the sets S (ui), i 1, 4m+3 have
the property that each S (wf) is of order 2m+l and S (ut) n S {uj) for i / *

is of order m, and from sets with this property one can immediately
construct an FT-matrix of order 4m+4 ([4], § 1). The converse is not necess-
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arily true; there exist H-matrices and corresponding configurations of
subsets with the above mentioned property which are not the sets S (ut)
of any tournament. I owe to Dr. N. Smythe the remark that thé existence

of extreme T2m tournaments is equivalent to the existence of " skew "
H-matrices of order 4m+4, that is //-matrices of the form IfS where / is

the identity matrix and S is skew symmetric. I also owe to Dr. Smythe the

proof of Lemma 3. The hitherto known orders of skew //-matrices are

given by E. C. Johnsen in [5], Theorem 2.6. The present Theorem 6 gives

infinitely many new orders; the first one is 76.

2. Lemma 1.

Let 2T be a T2>m tournament of order 4m+3. Then

(i) 3T is regular, i.e. S (v), S' (v) are of order 2m+l for every ve N (^~).

(ii) S (vl5 v2) is of order m for every pair of nodes vl5 v2 e N
(iii) The dual ST' of dT is also T2>m.

These statements have been proved in [3] (Lemma 4).

Lemma 2.

Let dT (ul5..., u„) be T2>m of order 4m+3. Let u^->uj\ then the set

{ uk; u^Ufc-^Uy } is of order m and the set { uk ; u7—>ufc->uf } is of order

m+1.

Proof The first set is identical with S' (ut) — S' (ut, uf — { Uj }, the

second set is identical with S (iq) — S (ui9 uf. The statement now follows
from Lemma 1.

Theorem 1.

If there exists an extreme T2 m tournament then there also exists an

extreme T2 2m+1 tournament (of order 8m+7).
This is basically the well known duplication theorem of //-matrices

though not an obvious consequence of it.
Let n 4m+3 and uu un the nodes of a T2,m tournament STn.

Write z'->j if u^Uj. Let uu un be the nodes of a dual 2T'n. We define

as containing the disjoint subtournaments PTW ^T'n and another
node v with the following additional dominance rules:

(1) v u'i ut v for i 1,..., n

Furthermore if i-+j then

(2) Ut -> Uj ut -> Uj
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These rules define ZT completely; we show that is T2:2m +1 • We merely

enumerate S (t>i, v2)for all possible pairs of nodes of ZT.

S(v,ut) {uk;k-+i},
S(v,u'i) { uk; k^i}are of order 2m+l by Lemma 1 (i).

S(uh Uj){ uk; k-*i, k-*j) order by Lemma 1 (ii)

u { uk;k-*i,k^-j}order m

u { u'i }if i-+j

{ u'j } if j-*iorder 1.

S'(u'i,u'j) { uk;i^k,j-*k} order m by Lemma 1 (iii)

u { uk; k->i, k-*j} order m

u { v}order 1.

S (ut,u'i){ uk;k^i}order 2m+l

S(ut, u'j) { uk, k-*i, k-+j } order m

u { u'k;j-*k, k^i}order m+1 if i-*j
order m if j-*i, by Lemma 2

v{u'i}if/->/ order 1.

The proof of Theorem 1 suggests that we should seek the existence of
T2:mtournaments ZT„,n Am+3, with the following structure:

(El) STn contains two disjoint dual subtournaments 2m + 1 zr Ua;cceG),

&"2m + 1 3T (u'^oleG), indexed by an additive abelian group G of
order 2/77+1, and another node v, such that

(£2) ua -> v -> ua all a e G

(£3) ua-+uß=> ua+y -> uß+7,

Ua Uß => Ua + y Uß + y ^ JGG.

Thus the regular representation of G acts as a group of automorphisms
Of ^2m + l- We shall refer to conditions (El) —(E3) as property (£).

A tournament ^+„, + 3 with property (£) is completely described by two
sets of elements of G, namely
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A { a; a ^0, ua-

B {ß; Uß-+u0 }

From (E3) it then follows that

(£3.1) Uy + a -+ «y

(£3.2) U 'y-a U'y

(£3.3) Uy + ß Uy

(£3.4) u'y_ß,-*uy

all

yeG, oceA, ßeB, ß' eB' G - B

In order that (E3.1) be consistent, i.e. that uy+a-^uy and uy-+uy+a be mutually
exclusive, it is necessary and sufficient that

(£4) ote A o — A

In particular A must contain exactly m elements.

We wish to set up conditions for ^~4m+3 to be T2m. We must examine

S (vi, v2) for all possible pairs of nodes of dTAm+2.

S(v, uy) { uy+a; oceA} by (El) and (E3.1) hence is of order m, as

required.
S(v, uy) { uy+ß\ ß e B } by (El) and (E3.3), thus B must also contain

exactly m elements (hence B' G — B contains m+1 elements).

S(Uyvlly2) {Uy1 + cc1 Uy2 + a2 ; (X1,GC2EA }

u{ih^ßi Uy2_ß2; ßl,ß2eBr}.

Thus for ^4m+3 to be T2 m it is necessary that for each ö y1 — y2 A 0,

the total number of solutions of

(3.1) ô a2 — oct ctt, oc2eA,

(3.2) ö=ß[-ß2, ßl,ß2eB',

be m. We show that this condition is also sufficient.

Theorem 2.

In order that two subsets A { oq, am }, B — { ßu ßm } of G,
both of order m, define a T2 m tournament ^"4m+3 with property (E), it is

necessary and sufficient that
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(i) oc e Ao — a ^ A, and

(ii) for each ô e G, ô ^ 0 the equations (3.1) and (3.2) should have alto¬

gether m distinct solutions.

We have already seen that the conditions are necessary. To prove

sufficiency we have to show that the sets S (uyl, uy2), S(uyl, uy2) contain m

elements. Now

S(uyi,uy2) {uy1 + ß1 Uy2 + ß2; ßußl^B)

u{uy'i_a1 Uy2 _a2 j CCuCC2eA}

S(Uy1,Uy2) { Uy1 + a Uy2Jrß\ 0CEA,ßEB }

\j{u^_ß,= Wy2_a; cteA,ß'eB'}.

But for ô y1~ y2 e G the total number of solutions of ô ß — cc,

S ß'-oc9 oceA, ßeB, ßf e B' is equal to the number of elements in A

since <5+a is either ß or ßf. Hence S (uyv uj2) contains m elements. On the

other hand for ô yt — y2 ^ 0 the total number of solutions of <5 ßi — ßu
S ax — oc2 is m — 1, by (3.1) and (3.2) and by the following Lemma (with
k m, n 2m-'r 1) :

Lemma 3.

Let B { ßl9 ßk }, B' { ßu ßn-k } be a partition of an abelian

group G of order n into two disjoint subsets. For fixed y e G denote by N (}'),

N' (y) the number of solutions of the equations

y ßi -ßj,y-
respectively. Then

N' (y) - N(y) n - 2k

Proof. Form the sums y+ßj, j 1, k. If r of these sums are in the
set B then k — r are in the set B' ; consequently the number of sums y+ßp
in B' is (n — k) — {k — r) n — 2k+r. But then N (y) ~ r, N' (y) n — 2k+r.

Two subsets A and B of an additive abelian group G of order 2m+1
will be called complementary difference sets in G if

(DO) A contains m elements,

(Dl) oc e A => — a $ A, and



(D2) for each ô e G, ô ^ 0 the equations

ö <xt - a2 ô ßt - ß2

have altogether m — 1 distinct solution vectors

(at, oc2) e A x A (ß1, ß2) eB x B

From conditions (DO) and (Dl) it follows that 0 $ A. From condition
(D2) it follows that also B must contain m elements. Furthermore by
Lemma 3, (D2) is equivalent to the condition that (3.1) and (3.2) have

altogether m distinct solution vectors (al5 a2) e A x A, (ß'l9 ß2) eB'xB'
where B' — G — B. Our main purpose is to demonstrate the existence of
complementary difference sets when (i) Am+3 is a prime power, (ii) 2m +1
is a prime power # 1 (mod 8). In the case when 2ra+1 is a prime power 1

(mod 8), a general existence theorem does not seem to hold; a machine
search by David Blatt at Sydney University has shown that in the lowest

non-trivial case m 8 there do not exist any complementary difference

sets in the cyclic group of order 17.

3. We now pass to the construction of complementary difference sets

in the cases indicated.

Theorem 3.

If q 4m+3 is a prime power and G the cyclic group of order 2m+l
then there exist complementary difference sets in G.

Corollary. If q 4m+3 is a prime power then there exists a T2 m

tournament of type (E) and order q.

Proof Let p be a primitive root of GF(q), Q { p2ß\ß 1,2m+l}
the set of quadratic residues in GF (q). Define A and B by the rules

(4.1)

(4.2)

a g A iff p2a — 1 e Q

ßeB iff p2ß-leQ.
Since

- 1 p2m+1 $Q,

p2cc — \ eQo p~2a — 1 —p"2a (p2a - 1) $ Q

so that oce A => — oc $ A, and conditions (DO) and (Dl) are satisfied. Also

(4.3) ß'eB' if -(p2ß' + l)eQ.
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Suppose now that

(5.1) S a2 — oq 0 <xl9a2e A

where

2«! 2(A -<5),
(5.2) p

1 1 +

2a0 2A?
(5.3) P

2 1 + P

by (4.1) for suitable 11,A26 G. Then

p2"2P2(ai+"

by (5.1) and (5.2), hence by (5.3)

20 2A7 2A.
(5.4) p 1 p

2 A

where p
2 + 1 e ß by (5.3).

Similarly if

(5.10 S & - ß[ # 0, ßußieB'

where

2ß > 2 A^ - 5)

(5.2') -p
1 1 + p

"i 2A2
2

(5.3') - p
"2 1 + P

for some Au X2 e G, we get

2«' 2(5+n') 2;- P
'2 - p ^ p2ä + p

1

hence again

2*2 2A!
P25 - 1 P - P

2A2
with — (p +l)e Ô by (5.30-

Conversely to every solution Au X2 e G of equation (5.4) we can determine

uniquely a2 e A or ß2 e B from (5.3) or (5.30 depending on whether
2 A 221

1+p 2 P2ÔJrP is in Q or not, hence oq or ßx from (5.1), (5.T) so that
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also (5.2) or (5.2') be satisfied, implying oq e A, ß[e B'. Thus the total
number of solutions of (5.1) and (5.T) is equal to the number of solutions
of (5.4) which is m by the following Lemma (with y p2b — 1):

Lemma 4.

Given y e GF (q), y # 0, q 4m+3, the equation

(6) y a2-a1has exactly m distinct solution vectors (ou o2) e ßxß.
This is a well known result on perfect difference sets, e.g. Ryser [2], p. 133

in the case of q prime. We give here a brief proof, to prepare the ground
for Theorem 5 where a similar but more involved argument will be used.

Denote by N (y) the number of solutions (crl5 cr2) e Qx Q of (6) and
consider the equations

<7i, a2, oq, g2 e Q. Each solution of (6.1) yields, by multiplication with
y0 e Q, a solution of (6) with y y09 and conversely each solution of (6)
with y yoe Q yields, by multiplication with y a solution of (6.1). Hence

N (y0) N (1) for each y0 e Q, and similarly N — y0) N (—1). On the

other hand 1 cr2 — o1 <=> — 1 o2 — o[ with cr2 o[ o2 hence also

N (1) N (—1) and we conclude (since each y ^ 0 is either y0 or — y0)

that N (7) is the same number p for each y # 0. Therefore p(q— 1)

2p (2m +1) is equal to the number of expressions v1—(J2 ¥" 0, o1, o2 e Q

i.e. to 2m (2m +1), giving p m.

Theorem 4.

Let q 4m+3 be a prime power pfc and G the elementary abelian p-group
of order pk and exponent p. Then there exist complementary difference sets

in G.

Corollary. If q 4m+3 is a prime power then there exists a T2 2m+1

tournament of type (E) and order 2q+l.
The proof follows immediately from Paley's construction of //-matrices

of order q and the doubling described in Theorem 1. The group G of
Theorem 4 is isomorphic to the additive group of GF (q) and we can use

the elements of GF (q) to represent G. As before we denote by Q the set of
quadratic residues of GF(q) and set A B Q; then (Dl) is trivially

(6.1)

(6.2)

1 <t2 — cr1

- 1 =S <72 -
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satisfied and also (D2) (with m being replaced by 2m+l) since by Lemma 4

both equations <5 oq — a2 (oq a2 e A Q) and ô ßl — ß2 (ßi, ßi G B 0)
have m solutions.

Theorem 5.

Let q 2m-h 1 be a prime power pk 5 (mod 8) (hence m 2 (mod 4))

and G the elementary abelian p-group of order pk and exponent p. Then there

exist complementary difference sets in G.

Corollary. If q 2m+l is a prime power 5 (mod 8) then there

exists a T2>m tournament of order 4m+3 2q+l and type (E).
An immediate consequence is

Theorem 6.

For q prime power 5 (mod 8) there exists a skew Hadamard matrix
of order 2 (q+I).

Although Hadamard matrices of order 2 (#+1) are known to exist even
when q 1 (mod 8) (Paley [1], Lemma 4) the result in Theorem 6 seems

to be new. Paley's matrices are not skew and it is very unlikely that their
rows and columns can be rearranged so as to yield skew H-matrices and

T2>m tournaments. The configurations obtained from the present construction

are definitely not isomorphic to those of Paley, except when q 5.

Proof of Theorem 5. We again identify G with the additive group of
GF (q). Let p be a primitive root of GF (q) and G0 the multiplicative group
of GF(q), of order q— 1 and generated by p. Denote by H0 gp {p4} the

subgroup of index 4 of G0, Hh i 1, 2, 3 the coset mod H0 in G0 containing

p\ and set K H0\j H1, K* H0 u H3.
We take A — K, B K*. Both contain m elements since H0 contains

Vffq— 1) Vim elements. Also condition (Dl) is satisfied since — 1

— pil{q~l) — pm e H2 by assumption hence ote K => — a e iT2 u H3.
To verify condition (D2) consider for fixed ô0 g H0 the following equations

in cq, y.2 e K, ßu ß2 e K* :

(7.0) <50 - a2

Clearly the number of solutions of each of these equations is independent

(7.1)

(7.2)

(7.3)

pô0 ßx - ß2

p2ô0 oq - gc2

P3 b0 ß1 — ß2
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of the choice of ö0 e H0 since

oleK, ßeK* =>p4ioteK, p4i ß e K*

for every i. Furthermore the numbers of solutions of (7.0) and (7.3) are
equal to each other because oceK=> ß ap3 eK* and ß eK* => p~3
ß ae K. Similarly the numbers of solutions of (7.1) ans (7.2) are equal
because

ß e K* => pß* e K

Finally (7.0) and (7.2) have the same number of solutions because

oceK=> ~p2OCEK.
By the same argument it can be shown that the number of solutions

of each of the equations

(8.0) <50 ßt ~ß2

(8.1) pS0 oq - oc2

(8.2) p2 ô0 ß± - ß2

(8.3) p3 (50 ot± - cc2

is the same. Hence for each ö ^ 0 the total number of solutions of

Ö cc1 - cc2, ö ß± - ß2

is the same number p. Therefore p(q— 1) — 2pm is equal to the total
number of expressions oq— a2, ßi~ß2> 1° 2m (m— 1), giving p^ m—1

as required.
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