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satisfying 1 ^p<2<q^co, the series (6.6) converges normally in
Lqp{G) to T. Next, T is the limit in E of

as r -» oo and, since it is plain that supp Sr ç Q for every r, (ii) is easily
A

derived. Finally, if T were a measure jn, it would necessarily be the case

that supp ji c q and so, for every ne TV, one would have by (6.1) and (6.4)

fn (T) I U„*Tv„(0)[ I v„ du I

Ü M (ßh

which is finite since 0 is relatively compact. However, this plainly would

entail/* (F) < oo, in conflict with (6.8), so that T cannot be a measure and

(iii) is verified. This completes the proof.

6.4 Remark. Theorem 6.3 was proved by Hörmander ([14], Theorem

1.9) for G Rn and any given pair (/?, q) satisfying 1 < 2 < q ^ oo,

this result being extended to a general noncompact LCA G by Gaudry [5].

The argument given by Hörmander (loc. cit. Theorem 1.6 and the remark

immediately following) for the case G =* Rn can also be extended to a

general LCA G and shows that, if either q ^ 2 or p ^ 2, then every
A

T e Lqp{G) is such that Lisa measure [and indeed a measure of the form
ij/Àr, where \jj e Lfoc (T) if q ^ 2 and ij) e Lfoc (T) if p ^ 2, and so

\j/ e Lfoc (T) in either case ]. Thus the hypotheses made in Theorem 6.3

about p and q are necessary for the validity of the conclusion.

Part 3: Applications to Fourier series

§ 7. Applications to divergence of Fourier series.

7.1 Throughout §§7-10, G will denote an infinite Hausdorff compact
Abelian group with character group T, and XG the Haar measure on G,

A
normalised so that Xg(G) 1. For any/e L^G), / will denote the Fourier
transform of /; for any finite subset A of F,

sAf I/(y)y (7.1)
yeA

is the d-partial sum of the Fourier series of /; and sp (/) will stand for
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the spectrum offi i.e., for the support supp f {y e T \ f (y) ^ 0} of /.
The term "trigonometric polynomial" will frequently be abbreviated to

"t.p.". In addition, $ will denote the largest torsion subgroup of F

([7], (A.4)), and n the natural map of r onto r/$. If A denotes a subset

of r, [A] will stand for the subgroup of r generated by A.

By a (convergence) grouping we shall mean a sequence 3 (AfijsN

(Aj) of finite subsets A j of T such that

Jj +1 (jeN);

U Aj T0 is a subgroup of r, said to be

j i
covered by 3;

for each j e TV, dy ßy+Zy, where dy iS

nonvoid finite subset of $ and ßy is a finite
subset of r such that n Qj is 1-1.

(7.2)

[The first two conditions are natural enough in the context described in 7.3,

but the third is less so and may well be pointless.] The grouping 3 is said

to be of infinite type if and only if n (F0) is infinite.

7.2 Examples, (i) Let F0 be any countable subgroup of r such that

r0 n 0 {0}; for example, T0 {ny0 : n e Z}, where y0 e F\&. Then

a grouping 3 covering T0 results whenever Aj {0} and Aj I2y for
every y e A, where (&j)jeN is any increasing sequence of finite subsets of
r0 with union equal to f0. This grouping is of infinite type if and. only
if r0 is infinite.

(ii) If G is connected, and if T0 is any countable subgroup of T, then
([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) T0 is an ordered group
isomorphic to a discrete subgroup of R. Assuming T0 ^ {0}, T0 has a

smallest positive element y0 and T0 {ny0 : n e Z}. A natural grouping
H covering T0 is that in which Aj {0} and

Aj Qj {;ny0 : n e Z, | n | ^ j]
for every j e N; this grouping is of infinite type.

7.3 A grouping 3 (Aj)jeN will be thought of as specifying one of
the many possible ways in which one may interpret the convergence of
Fourier series of functions f on G satisfying sp (/) T0, namely, as

convergence of the corresponding sequence of partial sums (SA.f)JeN.
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Indeed, the conditions (7.2) guarantee that lim SAf f for all sufficiently
j -+00 3

regular such functions /. However, our concern rests with the possibility
of constructing continuous functions f on G satisfying

sp (/) £ r0, lïm Re SAjf(0) - oo. (7.3)

j ->00

It will appear that the possibilities exhibit a fairly clear dichotomy,
depending largely upon whether G is or is not O-dimensional.

In the first place, it will emerge in 7.6 that the construction principle
of § 2, applied to the Banach space E — C (G) of continuous complex
valued functions on G [with norm || • || equal to the maximum modulus]
and to sequences of gauges of the type

/I- Re SAf(0) Re jG (7.4)

where DÀ stands for the "Dirichlet function"

DA I y, (7.5)
yeA

shows that the problem hinges on the existence of groupings Sf for which

Pj || Da. ||i Jg I da. I d)-Cj -* oo. (7.6)

Accordingly, and in view of the fact ([7], (24.26)) that G is O-dimensional

if and only if F coincides with #, it emerges that the dichotomy referred to

may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not O-dimensional (i.e., <P ^ F). Then (see Example 7.2 (i))
there exist groupings ÇÙ — (Aj) of infinite type; and, for any such grouping,
one can construct (fairly explicitly, as described in 7.6) continuous functions

f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if F0 is any
countably infinite subgroup of F satisfying F0 n # {0}, and if (Aj)jeN
is any increasing sequence of finite subsets of F0 with union F0, we can
construct a continuous f on G satisfying (7.3).

(ii) G is O-dimensional (i.e., $ F). Then there exists no grouping
of infinite type. However, given any countable subgroup F0 of F, there

are groupings @ (Aj) covering F0, in which Qj {0} and Aj Aj is

a finite subgroup of F0, and for which

/ lim SA f
j~> oo

3
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uniformly on G for every continuous / satisfying sp (/) £ F0.
Case (i) will be dealt with in § 8, case (ii) in § 9. The groupings described

in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 Remark. Perhaps it should be stressed here that, if T0 is any
infinite subgroup of F, there is no obstacle to constructing continuous

functions / such that sp (/) Ç F0 and finite subsets Aj c Aj + 1 of F0
for which

lim SA J(0) co.
j 3

[One has in fact only to construct a continuous / such that sp (/) £ F0
A

and J / (y) I oo ; it is then trivial that there exist finite subsets A of F 0
yer

for which | SAf(0) | is arbitrarily large, so that we can choose a sequence

(AJ) for which A} ç Aj + 1 and | SAJ(0) | -> oo with j.] However, the

sets Aj obtained this way will not [and, in view of 7.4 (ii), cannot] in general
00

be such that U Aj T0. For more details, see A.5.1 and A.5.2 of the
j= i

Appendix.

7.6 Suppose one is given a grouping 3 (A3)jeN covering T0 and

satisfying (7.6). As is described in § 10, one may construct polynomials
qp in two indeterminates over the real field (v being a suitable fixed

integer not less than 36 and p} any positive number not less than || DA. || œ)

such that, for suitable unimodular complex numbers the t.p.s

satisfy

\\Qj\\£i,sp(Qj)ç[Aj]çr0,
Sa Qj (0) jG Dj, Qj dlG is real and ^ ^ pj.

In view of (7.2), (7.6) and (7.7), one may choose inductively a sequence
Jn)neN °f positive integers so that

Sa Qjn (0) is real and > n3, I

"
(7-8)

j„ <jn+i,sp(Qj)sr0. ]

Accordingly, the t.p.s

(7.7)
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-"2ô,„
satisfy the conditions

sp(u„) £ r0, £ || || c °°

Sa un (0) is real and > n-

(7.9)

At this point the construction in § 2 will yield integers 0 < nx < n2 <
and specifiable sequences (yp)peN of positive numbers such that each function
of the form

oo

/= I yPu-p
P l p

is continuous and satisfies

sp (/) <= r0, lim Re SA. /(0) oo. (7.10)

A fortiori, / satisfies (7.3).
We add here that, if the A ; are symmetric, the DA are real-valued,

j
and we may work throughout with real-valued functions, replacing
Re SA f by SA f everywhere.j j

§ 8. Discussion of case (i) : G not 0-dimensional

8.1 In this case 0 ^ T, and we begin by considering a finite subset

of r of the form -

A Q + A, (8.1)

where Q and A are finite subsets of r such that n | Q is 1-1 and 0 / A c 0.
We aim to show that (for a suitable absolute constant k > 0)

/ log N \*ii^ii' • <8-2)

provided N | Q | (the cardinal number of Q) is sufficiently large.

8.2 Proof of (8.2). Introduce H as the annihilator in G of # and

identify in the usual way the dual of H with r/&. Likewise identify the

dual of K — G/H with $ ([7], (24.11)).
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