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-"2ô,„
satisfy the conditions

sp(u„) £ r0, £ || || c °°

Sa un (0) is real and > n-

(7.9)

At this point the construction in § 2 will yield integers 0 < nx < n2 <
and specifiable sequences (yp)peN of positive numbers such that each function
of the form

oo

/= I yPu-p
P l p

is continuous and satisfies

sp (/) <= r0, lim Re SA. /(0) oo. (7.10)

A fortiori, / satisfies (7.3).
We add here that, if the A ; are symmetric, the DA are real-valued,

j
and we may work throughout with real-valued functions, replacing
Re SA f by SA f everywhere.j j

§ 8. Discussion of case (i) : G not 0-dimensional

8.1 In this case 0 ^ T, and we begin by considering a finite subset

of r of the form -

A Q + A, (8.1)

where Q and A are finite subsets of r such that n | Q is 1-1 and 0 / A c 0.
We aim to show that (for a suitable absolute constant k > 0)

/ log N \*ii^ii' • <8-2)

provided N | Q | (the cardinal number of Q) is sufficiently large.

8.2 Proof of (8.2). Introduce H as the annihilator in G of # and

identify in the usual way the dual of H with r/&. Likewise identify the

dual of K — G/H with $ ([7], (24.11)).
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We then have

II A.Ill 1*1 E y| A
yeA

— Jg/H ^G/H(X) I S X ® (X^"~^ ^ (X^~y) I d^n(y)>
de£2 (f>eA

the inner integral being viewed as a function of x x-^H Thus, writing
0 for n (9) and noting that (j) (y) 1 for $ e A ç $ and y e H, we obtain

|| Ad ||i 1g/h dXG/H(x) J# | S a x)® W I (8-3)
06fi

where

a (0, x) 0 (x) J] 0 (x).
<£e/i

Now, since the dual of H (namely r/&) is torsion-free ([7], (A.4)),
Theorem A of [8] shows that (for a suitable absolute constant k > 0) we

have

/ log N \*
J„ I Z a (9, »>8 m I JIM a 4 I « (9. *> I

t(rrETl S (8'4)
\log log NJ 4,sA

since | 0 (x) | 1 and <j>(x) depends only x. By (8.3) and (8.4),

/ loa N\*|| A ||i =^(T j ~ Jg/W I E ^ W I ^c/i/W' (8-5)
VloglogiV/ 4*A

Since A # 0, the remaining integral is not less than the maximum modulus
of the Fourier transform of the function 3c | —> <fi (x), i.e., is not less

<f>eA

than unity. Thus, (8.2) follows from (8.5).

8.3 Proof of 7.4 (i). The conclusions stated in case (i) of 7.4 are
now almost immediate. If Q) (Aj)jeN is a grouping of infinite type
covering r0, | n (Aj) | oo and so, since Aj ç $, | n (Qj) | -> oo. Then
(8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.

8.4 Supplementary remarks. The fact that, when G is not 0-dimen-
sional, (7.6) holds for suitable subgroups F0 of F and suitable groupings
3f (Aj)jeN covering F0 can be derived without appeal to Theorem A
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of [8]. To do this, it suffices to take yk e F\ $ (k 1, 2,m) such that
the family (yk)i^k^m is independent (see [7], (A.10)), define

ro :nkeZfor1,2,..., m},

and make use of the formula

Jg F(Ji (•*)>..., ym(x))dyG(x)
(277:) 11'... ft* Fie" (8.6)

valid for every Fe C(Fm), where T denotes the circle group. (Recall that
Yfc i nk Jk denotes the character x |-> yi(x)"i... ym(x)nm of G.) It then

appears that (7.6) holds when one takes

Ai {111 1nkyk:I nk|^ for k—l,2,..., },

where the rjk are positive integers satisfying rj,k ^ rj,k+ 1 and limy^^ rjk
oo. Moreover, when m — 1, the Cohen-Davenport result (essentially

Theorem A of [8] for the case G — T) shows that (7.6) holds for every
grouping Q) covering T0.

The verification of (8.6) is simple. First note that, if G and G' are

compact groups, and if (j) is a continuous homomorphism of G into G',
then

\G{Fo4>)dXG=\Fd).HC(8.7)

for every F e C {G'). (This is a consequence of the fact that
F I Jg (F ° <t>)dÀG is invariant under translation by elements of (j) (G),
combined with the uniqueness of the normalised Haar measure on a

compact group.) Taking G' Tm and (j) : jc | —> (y± (x), ym (x)), the

stated conditions on the yk are just adequate to ensure that the annihilator
in Zm (identified in the canonical fashion with the dual of Tm) of (j) (G) is

{(0,..., 0)} and so ([7], (24.10)) that 0 (G) Tm. Accordingly, (8.6) appears
as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited
in other ways. For example, suppose more generally that k is an arbitrary
nonvoid set and that (yk)kSK is a finite or infinite independent family of
elements of F\ 0. Denote by F0 the subgroup of F generated by
{yk : k e k}. Taking G' i* TK and (j) : x |-> (yk(x))kGK, one may use (8.7)

in a similar fashion to show that there is an isometric isomorphism
F <-> F o (j) f between LP(TK) (or C (TK)) and the subspace of LP(G) (or
C (G)) formed of those/eLp(G) or C (G)) such that sp (/) ç F0. Moreover,

if one identifies in the canonical fashion the dual of TK with the weak
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.j. A A
direct product ZK the said isomorphism is such that F f o (j)', where

<£' is the isomorphism of ZK onto F0 defined by (nk) 2^fc6K nk yk.

One consequence of this may be expressed roughly as follows: If the

compact Abelian group Gis such that r\ <P contains an independent family
of (finite or infinite) cardinality m, then Fourier series on G behave, in
respect of convergence or summability, no better than do Fourier series

on Tm.

Another consequence is that, if A is a subset of F0, then A is a Sidon

(or A(p)) subset of F if and only if 4>,~1(A) is a Sidon (or A(p)) subset
*

of ZK

8.5 Further results. Theorem A of [8] implies something stronger
than (8.2), namely: if co is any complex-valued function on F such that

CO (y + (j)) œ (y)e <P), (8.8)

so that co can be regarded as a function on r/<P, and if we write

E ® (y) % saAf E © / (y), (8.9)
yeA yeA

then, for A Q + A as in (8.1), we have

/ Ior N \*
l|z>ï|11 (U0)

provided N | Q|is sufficiently large.
So, if we can arrange for Q Qj to vary in such a way that the right-

hand side of (8.10) tends to infinity with j, the substance of 7.6 will lead to
a continuous / satisfying sp (/) e F0 and

lim ReS1?./(0) co. (8.11)
j~* 00

Taking the most familiar case, in which r Z and ^ {0},
and supposing A Qtorange over a sequence (zly) of finite subsets of Z
such that, if Nj| Aj|,/ log Nj \*

lim i i 77 mm co (n) oo,
; Voglog^.; ueAj[

1

the construction will lead to a continuous / on such that

lim Re S%.f(0)oo.
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In particular, taking Aj {n e Z :2j^ n <1} it can be arranged
that

v ± fin)
nëZ (log (2+\n\)T

diverges for any preassigned distribution of signs ± and any preassigned
a < £.

Of course, much stronger results are derivable by using random (and
unspecifiable changes of sign, but there seems little hope of making this
even remotely constructive.

§ 9. Discussion of case (ii : G 0-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero
in G formed of compact open subgroups IF. For each such W the
annihilator A W° in r of IF is a finite subgroup of r. Define

X characteristic function of IF. (9.1)

A
Thsn kw is continuous, kw ^ 0, JG kw dXG 1. The transform kw of kw
is plainly equal to unity on A. On the other hand, since IF is a subgroup,
we have for a e W and y e T

A

kw(?)Ig kw (x) y (x) dlG (x) jc kw {x+d) y dlG (x)

Ig kw (y) y (y-a) dXG (y)

A
y(a)kw(y),

A A
which shows that kw(y) 0 if yeT\A. Thus kw is the characteristic

function of A, and so

kw Dw o. (9.2)

By (9.1) and (9.2), a routine argument shows that, if 1 ^ p < oo and

feLp(G), then

/ lim SWof (9.3)
w

in U(G); and that (9.3) holds uniformly for any continuous /.

9.2 Proof of 7.4 (ii). If T0 is any countably infinite subgroup of r
we can choose a sequence Wj of compact open subgroups of G such that
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