I.6. Système de générateurs de \$S_r\$. Cas où p=2

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 18 (1972)

Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: **25.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

— Si
$$m_{i-1} < j \le m_i$$
 alors $p^{r-i+1}e_i \in H_r$ et $p^{r-i}e_i \notin H_r$.

On en déduit tout d'abord que (p-1) $p^{r-l+1}e_0 \in H_r$ et compte tenu de la condition I.2.B (p_j-1) $e_j \in H_r$ pour $1 \le j \le m_r$. Le noyau de μ qui a pour base: $\{(p-1)$ $p^{r-l+1}e_0, (p_1-1)$ $e_1, ... (p_{m_r}-1)$ $e_{m_r}\}$ est donc contenu dans H_r .

On a donc
$$H_r = \mu^{-1}(S_r)$$
 et $\frac{Z^{m_r+1}}{H_r}$ est isomorphe à $\frac{G(n_r)}{S_r}$.

Le degré de K_r sur Q est donc égal à

$$\operatorname{Card}\left(\frac{G\left(n_{r}\right)}{S_{r}}\right) = \operatorname{Card}\left(\frac{Z^{m_{r}+1}}{H_{r}}\right) = p^{r}.$$

Comme $p^{r-1}e_1 \notin H_r$, $\frac{Z^{m_r+1}}{H_r}$ est donc un groupe cyclique. K_r est donc cyclique sur Q.

Soient H_i les sous-modules de Z^{m_r+1} ayant pour bases $\{p^ie_1, f_0, f_2, ... f_{m_r}\}$, i de 1 à r. Soient S_i les sous-groupes de $G(n_r)$ définis par $S_i = \mu(H_i)$ et K_i les sous-corps de $\Omega(n_r)$ corps fixes de chacun des S_i .

Pour tout i de 1 à r, H_i contient H_r , donc K_i est un sous-corps de K_r . L'indice de H_r dans H_i est p^{r-i} , donc K_i est le sous-corps de K_r de degré p^i sur Q.

On a
$$p^{r-l+1}e_0 \in H_r$$
 et $p^{r-l}e_0 \notin H_r$. D'où $b_0^{p^{r-l+1}} \in S_r$ et $b_0^{p^{r-l}} \notin S_r$. Donc $b_0^{(p-1)p^{r-l}} \notin S_r$, $T\left(n_r, \frac{n_r}{p}\right) \nsubseteq S_r$ d'où $K_r \nsubseteq \Omega\left(\frac{n_r}{p}\right)$.

De même si $m_{i-1} < j \le m_i$, on a alors $c_j^{p^{r-i+1}} \in S_r$ et $c_j^{p^{r-i}} \notin S_r$, et compte tenu du lemme I.1, $c_j \in S_{i-1}$ et $c_j \notin S_i$, c'est-à-dire:

$$K_{i-1} \subseteq \Omega\left(\frac{n_r}{p_j}\right)$$
 et $K_i \not\subseteq \Omega\left(\frac{n_r}{p_j}\right)$

 $(\Omega(n_i))_{1 \leq i \leq r}$ est donc la suite de corps cyclotomiques associée à K_r . Dans les cas $u_r = 0$ et $u_r = r + 1$, la démonstration est analogue.

I.6. Système de générateurs de S_r . Cas où p=2

Si K_r est une extension de degré 2^r sur Q, cyclique sur Q, on peut de la même façon donner un système de générateurs du sous-groupe S_r de $G(n_r)$.

On notera comme précédemment c_j un générateur de $T\left(n_r, \frac{n_r}{p_j}\right)$.

Si $u_r = 0$, $G(n_r)$ est produit direct des sous-groupes $T\left(n_r, \frac{n_r}{p_j}\right)$ j variant de 1 à m_r .

Si $u_r \ge 2$, a_0 désigne l'élément de $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ tel que $a_0 \equiv -1$ (2^{u_r}) .

Si $u_r = 2$, a_0 engendre $T\left(n_r, \frac{n_r}{4}\right)$ et $G\left(n_r\right)$ est produit direct de $T\left(n_r, \frac{n_r}{4}\right)$ et des sous-groupes $T\left(n_r, \frac{n_r}{p_i}\right)$, j de 1 à m_r .

Si $u_r \ge 3$, $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ est produit direct de $\{a_0, 1\}$ et de $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$.

On notera a_0' un générateur de $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$. $G\left(n_r\right)$ est alors produit direct des sous-groupes cycliques:

$$\{a_0, 1\}$$
, $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$, et $T\left(n_r, \frac{n_r}{p_j}\right)$,

j variant de 1 à m_r .

Proposition I.3 bis

Soit K_r une extension cyclique de degré 2^r sur Q, et soit $(\Omega(n_i))_{1 \leq i \leq r}$ la suite de corps cyclotomiques associée à K_r .

— Dans le cas où $3 \le u_r \le r + 1$, il existe des nombres $\alpha_0, \alpha'_0, \alpha_j$, pour $2 \le j \le m_r$, tels que S_r soit engendré par:

$$\{c_1^{2^r}, c_1^{\alpha_0}a_0, c_1^{\alpha'_0}a'_0, c_1^{\alpha'_j}c_j; 2 \leq j \leq m_r\}.$$

 α_0 vérifie la condition: $\alpha_0 \equiv 0 \ (2^{r-1})$.

 α'_0 vérifie la condition:

I.3.A bis:
$$\alpha'_0 \equiv 0 \ (2^{l-1})$$
 et $\alpha'_0 \equiv 0 \ (2^{l})$.

Les α_j , pour $2 \leq j \leq m_r$, vérifient la condition:

I.3.B bis: Si
$$m_{i-1} < j \le m_i$$
, alors $\alpha_j = 0$ (2^{i-1}) et $\alpha_i \neq 0$ (2^i) .

— Dans le cas où $u_r = r + 2$, il existe des nombres α_j , pour $0 \le j \le m_r$, tels que S_r soit engendré par: $\{a_0^{'\alpha_0}a_0, a_0^{'\alpha_j}c_j; 1 \le j \le m_r\}$.

 α_0 vérifie la condition: $\alpha_0 \equiv 0 \ (2^{r-1})$.

Les α_i , pour $1 \le j \le m_r$, vérifient la condition I.3.B bis.

- Dans le cas où $u_r = 2$, il existe des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B bis et tels que S_r soit engendré par: $\{c_1^{2^{r-1}}a_0, c_1^{\alpha}ic_j; 2 \le j \le m_r\}$.
- Dans le cas où $u_r = 0$, il existe des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B bis et tels que S_r soit engendré par: $\{c_1^{2r}, c_1^{\alpha} i c_j; 2 \le j \le m_r\}$.

On démontre tout d'abord le lemme suivant:

LEMME I.2 bis

- Dans le cas où $u_r \ge 3$, $a_0'^{2^{r-l+1}} = 1$ et $a_0'^{2^{r-l}} \notin S_r$.
- Dans le cas où $u_r = 2$, $a_0 \notin S_r$.
- Si $m_{i-1} < j \le m_i$ alors $c_j^{2^{r-i+1}} \in S_r$ et $c_j^{2^{r-i}} \notin S_r$.

En effet si $u_r \ge 3$, la condition I.2.A bis implique $u_r = r - l + 3$. 2^{r-l+1} est donc de l'ordre de a_0 et d'autre part, si $a_0^{r-l+1} \in S_r$, alors:

$$\left(T\left(n_r,\frac{n_r}{2^{u_r-2}}\right)\right)^{(2^r-l)} = T\left(n_r,\frac{n_r}{2}\right) \subseteq S_r.$$

D'où $K_r \subseteq \Omega\left(\frac{n_r}{2}\right)$ et $\Omega\left(n_r\right)$ ne serait pas le plus petit corps cyclotomique

contenant K_r . De même si $u_r = 2$ et $a_0 \in S_r$ alors on aurait $K_r \subseteq \Omega\left(\frac{n_r}{4}\right)$.

Le reste de la démonstration est identique à la démonstration de I.3.

I.7. Construction d'extensions cycliques de degré $2^{\rm r}$ sur Q Proposition I.4 bis

Réciproquement, soit r un entier positif et $(\Omega(n_i))_{1 \le i \le r}$ une suite de corps cyclotomiques vérifiant les conditions I.2.A bis et I.2.B bis.

— Si $3 \le u_r \le r + 1$, soient des nombres: $\alpha_0 \equiv 0 \ (2^{r-1}), \ \alpha'_0$, vérifiant I.3.A bis, α_j , pour $2 \le j \le m_r$, vérifiant I.3.B bis. Soit S_r