Exercises

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 20 (1974)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 23.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

EXERCISES

Functions, relations, and subsets are assumed to be standard.

- 1. Prove that a continuous one-one function on a compact set has a continuous inverse.
 - 2. Prove that a continuous image of a compact set is compact.
 - 3. Give a non-standard characterization of:
 - (a) "The set S is open."
 - (b) "Point p (standard) is a limit point of the set T."
 - 4. Prove that a set is compact if and only if it is closed and bounded.
 - 5. Show that S is a proper subset of S^* if and only if S is infinite.
 - 6. Show that if $\lim_{n \to 0} a_n = 0$, then $\lim_{n \to 0} \frac{a_1 + a_2 + \cdots + a_n}{n} = 0$.

REFERENCES

- MACHOVER, M. and J. HIRSCHFELD, *Lectures on Non-Standard Analysis*, Springer Verlag, Berlin/Heidelberg/New York, 1969.
- ROBINSON, A. Non-Standard Analysis, *Proceedings of the Royal Academy of Sciences*, Amsterdam, Ser. A. 64 (1960), pp. 432-440.
- —— Introduction to Model Theory and the Metamathematics of Algebra, Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam, 1963.
- Non-Standard Analysis, Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam, 1966.

RUSSELL, B. The Principles of Mathematics, W. W. Norton Co., New York, 1903.

(Reçu le 10 mai 1973)

Hilbert Levitz
Department of Mathematics
Florida State University
Tallahassee, Florida, 32306.