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SUMMABILITY OF SINGULAR VALUES

OF L2 KERNELS.

ANALOGIES WITH FOURIER SERIES

by James Alan Cochran

1. Introduction

The exploitation of analogies between related mathematical contructs
is an often-fruitful endeavor. A thorough grounding in finite-dimensional
vector spaces enhances the mastery of Hilbert space concepts; knowledge
of the characteristic behavior of harmonic functions suggests properties
which can be shown to be shared by solutions of far more general elliptic
partial differential equations; the convergence question for a given infinite
series is made clear through investigation of a related improper integral.
Other examples abound, including the reader's own personal favorite.

In this paper we shall be concerned with L 2 kernels, i.e. two-variable
functions K (x, y) defined for a < x, y < b and satisfying

Il K11 [ \a Jj K (x,j)I2 < co,

which are envisioned as the kernels of linear Fredholm integral equations.
As is customary, we term the nonnegative square roots of the characteristic
values of the related kernel KK* (x, y), the singular values \in of the original
kernel. Our specific interest is in the connection between the smoothness

of the given kernel K and the growth behavior of these singular values. More
particularly, we explore, illuminate, and in general "exploit" the remarkable
analogies that prevail between this growth behavior of singular values
associated with square-integrable kernels satisfying various smoothness
criteria and the values of convergence exponents for classical Fourier series
under comparable conditions.

The existence of at least some sort of relationship which permits these
analogies is certainly to be suspected in view of the parallelism of the well-
known Fourier series result of M. Riesz (see Hardy and Littlewood [20],
Bary [1], pp. 184ff, or Zygmund [37], p. 251) that "the Fourier series of
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an L 2 function/ converges absolutely if and only if/ can be represented as
the convolution of two other L2 functions," on the one hand, and the
nuclear kernel result (Chang [7], [8]; see also Cochran [11], pp. 236-237)
that "the series of reciprocal singular values of an L 2 kernel K converges
(absolutely, of course) if and only if K can be represented as the composition
of two other L2 kernels," on the other. Especially venturesome readers

might even be willing to conjecture such a relationship merely on the basis

of the considerable use, over the years, of periodic functions of one variable
to generate difference kernels of two variables having specified properties.
The carry over of growth/smoothness connections, of course, is immediate
in these special cases. Indeed, we need only recall that if/ (x), — n < x < n,
is square-integrable, periodic with period 2n, and has the classical Fourier
series coefficients cn, then the correspondence

K(x,y) / (x — y) -n <x,y < tt

leads to a (normal) kernel with singular values

1/2 tu I cB I

We should expect the analysis of the general situation to be considerably
more complicated, however.

Perhaps somewhat surprisingly then it actually turns out that the

specific relationship which makes possible the general analogies which are
the subject of this paper is not an exceedingly deep result, when viewed in
the appropriate context, and we shall consider it carefully in a later section.

For the present we merely note that the relationship was essential for an
investigation carried out by Smithies and reported on already in 1937 [24].
Since the harvest is so rich, we can only conjecture why the relationship lay
fallow for so many years and only recently was "rediscovered" and put to
full use [13].

In the next section of this paper we list the various classical Fourier
series results with which we shall be concerned. These include the several

sufficiency conditions for absolute convergence of Fourier series due to
Bernstein and Zygmund, for example, as well as numerous more precise
results of Hardy and Littlewood, Szâsz, and others. Subsequently, in
Section 3, we gather together the mathematical machinery needed for the

investigation of the analogous spectral-theoretic results. A full discussion

of the growth behavior of the singular values for the various kernel smoothness

conditions of interest is then given in Section 4, along with some

additional historical perspective.
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2. Fourier Series Results

Let the integrable function/ (x), — n < x < n, have period 2n, so that

f(x + 2n) /(x), and in particular f (n) =f( — n), and assume that
0 < oc < 1 and p > 1. Denote by Af one of the three differences (it matters
not which for our purposes)

If Af O (| h |a) we say either that / (x) belongs to Lip a or that / (x)
satisfies a Lipschitz condition with exponent a. More generally, / (x) is said

to belong to the Lipschitz class Lip (a, p) if

In view of Holder's inequality, a function of Lip (a, p) belongs to
Lip (a, q) for all 1 < q < p. Moreover, a function of Lip a clearly belongs
to Lip (a, p) for all p > 1. In fact, the class Lip a may be viewed roughly
as the limit of Lip (a, p) for p — oo.

The classical complex Fourier series of/ (x) is defined by

/(x) — /(x — h), f(x+h) - /(x), f(x+h) f (x It) -

Equivalently, if cn - (an — ib„) for all n, then
1

1

/ (*) ~ x ao + E (an cos nx + bn sin nx)
^ 77 1

with

For given integrable fi the series

00

Z ic„r
« — 00

of moduli of the coefficients of these Fourier series may not converge for
any finite y > 0. If it does for certain y, however, the convergence exponent



— 144 —

p of the Fourier coefficients is the infimum of these y. For square-integrable/,
we know that p < 2. (The above series, of course, need not be convergent
for y p.)

The earliest result of interest to us here is the well-known theorem of
Bernstein [2], [3], [4] (see also Bary [1], pp. 153-171, or Zygmund [37],

pp. 240-243, for example) which we state as follows:

Theorem 2.1. If f (x) is in Lip a with a > ~, then p < 1.

This result has a sharpened form due to Szâsz [26], namely:

Theorem 2.2. If f (x) is in Lip a, then p l/(a+l/2),
and an even more general rendition due essentially to Szâsz [26] (the case

p 2), [27], Titchmarsh [28] (the corresponding theorem for transforms;
see also [29]), and Hardy and Littlewood [19] (under the assumption

ap > 1):

Theorem 2.3. If fix) belongs to Lip (a, p), then

' 1

P
a + 1 - 1/p

1

a + 1/2

1 < V < 2

p > 2.

For square-integrable f this result only has relevance, of course, when

lap > 2 — p.
We note in passing that since the class Lip (1, p), where p > 1, is

equivalent to the collection of integrals of functions of the Lebesgue class Lp

(Hardy and Littlewood [18], p. 599), Theorem 2.3 has as a special case the

well-known result originally established by Tonelli [30]:

Corollary. If f (x) is absolutely continuous and its derivative f\x)
belongs to Lp, p > 1, then p < 1.

Other restrictions on fix), — n <x < 7i, are also of interest to us.

Finite-valued functions are said to be of bounded variation if for all N > 1

and arbitrary choice of partition —n < x0 < x1 < < xN < n,

N

I I/OO - /(*«-1) I < B (const.) < co.
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Since / (x) is in Lip (1, 1) if and only if (iff) it is of bounded variation, no
new results arise without at least some modest additional assumptions
beyond mere bounded variation. One such set of combined restrictions
leads to the following classical result first established by Zygmund [35]
(see also Bary [1], Zygmund [37]):

Theorem 2.4. If f (x) is of bounded variation and also in Lip ß for
some ß > 0, then p < 1.

Here also there is a sharpened form, this time due to Waraszkiewicz [31]
(see also Zygmund [36]):

Theorem 2.5. If f (x) is of bounded variation and also in Lip ß for
some ß > 0, then p 1/(1+ß/2).

Other results, employing different sets of combined assumptions, can
be established using the convexity property of the class Lip (a, p) (Hardy
and Littlewood [20]), namely:

Property 1. Iff (x) belongs both to Lip (a,p) and to Lip (ß, q), where
p < q, then it belongs to Lip (y, r) for all p < r < q, where

r(q-p)r(q-p)
In the limiting case qco, where/(x) is in Lip ß, then

y ß+{a-ß)
r

Interplaying this property with the earlier Theorem 2.3, we obtain the
general

Theorem 2.6. If f (x) belongs both to Lip (y.,p) and to Lip (ß, q),
where p < q, then

i) for q<2,

1

P

pq(a -ß)> q -(x + 1 — 1 lp
1

ß + 1 _ ijq PI (a-ß) < q - P

L'Enseignement mathém., t. XXII, fasc. 1-2. m
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ii) for p <2 < q,

1

oc + 1 - 1 lp

20?~P)
q(2ß + ccp + l) - p(2cc+ßq + l)

1

ß + 1/2

iii) andfor p > 2,

1

a + 1/2

1

T+m

pq(a-ß) > q - p

0 < pq(cc—ß)<^q — p

% < ß

a > ß

oc < ß

Theorem 2.5 is the special case of this result when a=p=l,g oo.
Other special cases are :

Corollary 1 .If f (x) is of bounded variation and also in Lip (ß, q)

for some ß > 0, q > 1, then

1 ßq < 1

<2

P ßq + q - 1

2 (g -1)
ßq + 2q - 2>

ßq > 1, g < 2

ßq l, q > 2 ;

Corollary 2. If f (x) belongs to Lip (a, p) a/so satisfies an

ordinary Lipschitz condition with exponent ß > 0,

>1, p < 2

0 < p (a — /?) < 1, p < 2

a > /?, p > 2

oc < ß.

ccp + p — 1

2

ß (2 — p) + ap + 1

1

a + 1/2

1_
J8 + 1/2
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We note that p < 1 for ßq > 1 in the first case, while for p < 2,

a > ß > (l—ap)l(2—p) gives the same conclusion in the latter situation.

Comparable results were observed by Hardy and Littlewood [20] and

Waraszkiewicz [31].

Perhaps not surprisingly, the Corollary to Theorem 2.3 may be viewed

as a special case of Corollary 2 above since when ap > 1, functions in
Lip (a, p) likewise belong to Lip (a — l/p+ l/q, q) for all q > p and hence

are equivalent to functions in Lip(a-1//?) (Hardy and Littlewood [19]).

Alternatively, the earlier result can also be established using the following
variant of one-half of the Hausdorff-Young Theorem (Hausdorff [21],

Young [33], [34]; see also Hardy and Littlewood [17], Bary [1], Zygmund
[37]) and the familiar relation between the Fourier coefficients of/ (x) and
its derivatives/(s) (x), s 1, 2, :

Theorem 2.7. If f (x) is in Lp,p > 1, then

2 p > 2.

Property 2. If /(s-1)(x) is absolutely continuous for some positive
integer s, then the Fourier coefficients cns of f(s) (x) are given by

Cns ("0s Cn >

(Here, of course, we have made the tacit assumption that the periodic
/(r) (x), 0 < r < s - 1, are all continuous in the wide-sense, i.e. for all x,
so that in particular /(r) (n) /(r) (-7u), 0 < r < s - 1.) Property 2
easily leads to

Property 3. If /(5_1)(x) is absolutely continuous for some positive
integer s, and the convergence exponent of the Fourier coefficients of
f(s) (x) is ps9 then

r —
1 + sps

Taken together, the above results finally yield the general
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Theorem 2.8. If /(s_1)(x) is absolutely continuous for some positive
integer s, and /(s) (x) belongs to Lp, p > 1, then

P
p (s + 1) - 1

2

1 + 25

In particular, for 5=1
P

P < 2

p > 2.

2p - 1

2

3

P< 2

p > 2.

Any number of other deductions can be obtained by combining
Theorem 2.8 with earlier results. We content ourselves with

Theorem 2.9. If (x) is absolutely continuous for some positive s,

öftd if /(s) (x) Z5 o/bounded variation and also in Lip (ß, q) for some ß > 0,

q > 1, J/zcaz

1

^ < 1

P

1+5

> 1, q < 2
4(0 + 1+s) - 1

2(4-1)
q(ß + 2 + 2s) — 3 — 25 > 1, ^ > 2;

Theorem 2.10. If /(s~(x) z*5 absolutely continuous for some positive s,

and if /(s) (x) belongs to Lip (a, /?) (2/50 satisfies an ordinary Lipschitz
condition with exponent ß > 0, then

p(cc-ß) > l,p < 2

0 < p (a — j8) < 1, p < 2

a > ß, p > 2

a < ß.

p (a + 1 + 5) - 1

2

ß (2—p) + ccp + 1+25
1

oc + 5 + 1/2

1

ß + 5 + 1/2



3. Preliminaries

Since in this paper we are concerned for the most part with square-
integrable kernels K (x, y), and the Lebesgue integral is employed throughout,

equalities and inequalities between functions, therefore, are generally
to be understood as holding "almost everywhere" (a.e.).

For convenience we take a « 0, b *=* tt, which we may do without any
loss of generality, and consider the class of L2 kernels K (x, y) with
0 < v, y < it. In our later work we will need to direct our attention
primarily to one of the two variables x, y. Let us choose this to be the first and
extend K to be periodic in this variable. There are many ways, of course, to
accomplish this task, but a not unreasonable procedure is to first define

(3.1) K^(x,y)a^ K (*'y)
0,1, s)

OX

for some preselected nonnegative integer and then assume that K (x, y) is

extended, as an even function of a if s is even, and as an odd function of x
if s is odd, into the domain - n < x < 0, and thence as a periodic function
of x with period 2n. This approach ensures that, under suitable restrictions,
the classical Fourier series for K(s) (x, y), viewed as a function of its first
variable, consists solely of sine terms.

In order to enhance the character of the analogies in which we are
interested, we shall say that K(s) (x, y) is in Lip a if

I K(s)(x+h,y) - K(s\x-h ,y) \ <\h |a A(y) (0<a<l)
where A (y) is nonnegative and square-integrable. More generally, for
p > 1, K(s) (x, y) will be said to be in Lip (a, p) if

f *
\ \K(s)(x + h,y) - K^\x-h,y)\"dx < \h\xpA"(y)(0<a<l)
Jo

with L2A>0. In similar fashion, K(s> y) will be said to be relatively
uniformly of bounded variation if for all N > 1 and arbitrary choice of
partition 0 < x0 < x1<... < xN< n,

N

Z l^(s)(^,y) - K^
n 1

where L2 5 > 0. The comparable definitions appropriate whenever the
roles of x and y are reversed should be obvious.
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Two-variable kernels behaye very much like their one-variable analogues
as regards integrated Lipschitz conditions. Indeed, the following can be

easily established :

Property 4. Kernels in Lip (a, p) also belong to Lip (a, q) for all
1 < # < p. Kernels in Lip a are automatically in Lip (a,p) for all p > 1.

Property 5. Kernels which are relatively uniformly of bounded
variation belong to Lip (1, 1).

Property 6. If K (x, y) is absolutely continuous in x, for almost all y,
and

p > 1, then K (x, y) is in Lip (1, p).

Property 7. If a kernel belongs both to Lip (a, p) and to Lip (ß, q)
with 1 < p < q, then it belongs to Lip (y, r) for all p < r < q, where

P(l~r) oq(r-p)
y oc+ p

r(q-p)
A somewhat deeper result is

Property 8. Whenever 1 </? < <7, pq (a — ß) > q — p, kernels in
Lip (a, p) are automatically also in Lip (ß, q).

We come now to the main thrust of our narrative. The characteristic
values associated with a given L 2 kernel K (x, y), 0 < x, y < n, are those

special values of X for which there exist nontrivial solutions of the

homogeneous Fredholm integral equation

2/p
I K(1) (x, y)\p dx dy < 00

4. Growth Estimates for Singular Values

The singular values are those positive values 11 for which there exist non-
trivial cj) (x), ¥ (x) satisfying the coupled equations
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(4.1)

y.,
Jo

<j)(x) n [K(xJo

(x) n i K((y)
Jn

There are at most countably many of each, and they are customarily

ordered (indexed) according to increasing modulus, namely

0 < I Ax I < |A2 I <
0 < <n2 <

The important inequalities (Weyl [32], Chang [8]; see also Gohberg and

Krein [16], p. 41, Cochran [11], pp. 243-245)

N

(4-2) In= 1

" / IVZ — p > 0,N arbitrary,
n= 1 W

relate their growth behavior.
The earliest known growth estimates concern characteristic values. In

1909, Schur [23] established for continuous kernels that

z K

(This was subsequently extended to L2 kernels by Carleman [6]). Even

earlier, however, Fredholm himself [15] (see also Cochran [10], [11],

pp. 25Iff.) had essentially shown that

Theorem 4.1. If K (x, y) is in Lip a with a > 1/2, then

< 00

It is interesting to note that this result which, for characteristic values,
mirrors Theorem 2.1, actually predated the work of Bernstein.

Numerous other growth estimates, many of them analogous to our
earlier Fourier series results of Section 2, have been established by various

investigators. Notable among these are the substantial contributions of
Hille and Tamarkin [22] (see also Cochran [11], pp. 251-265). For the most

part, though, these pertain to characteristic values, and, in view of the
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Weyl-Chang inequalities (4.2), the growth behavior of the singular values
is of greater intrinsic interest.

With regards to these singular values, we do know that the associated

singular functions given by (4.1) can be chosen to be orthonormal amongst
themselves as well as biorthogonal with respect to the kernel K. It then
follows that

A V \ V1 ^n(k)
(4.3) K(x,y) X

n

where the right-hand side converges in the mean. Moreover,

(4-4) y(~) =11* ll2>
« w

so that for L2 kernels we readily conclude that the series of reciprocal
singular values is y-summable at least for all y > 2. The convergence of
XO/aO7 f°r exponents y smaller than 2, however, cannot be established

without additional restrictions on the kernel K. *)

The additional restrictions in which we are interested are of the "smoothness"

variety. Let us assume that the square-integrable kernel K (x, y) is

also such that the K(r) (x, y) 0 < r < s — 2, (defined by (3.1)), are
continuous in x, a.e. in y, for some positive (nonnegative) integer ^ K(s~1} (x, y)
is absolutely continuous in x, a.e. in y, and X(s) (x, y) is in Lp(x), a.e.

in y, for some p > 1. Under these conditions Smithies [24] essentially
showed that

Theorem 4.2. If K(s)(x,y) belongs to Lip (a, p), then ^ (1/aO7

converges for all y > p where

1

a + s + 1 — lip

I
i

a + s + 1/2

When s 0, the additional proviso a + 1/2 > 1 fp may be needed since

K s L2.

1) Although now-a-days it is rather routine to convince yourself of this fact (recall
our earlier discussion on difference kernels) Carleman [5] was probably the first to carefully

establish that even continuity of the kernel was not generally sufficient to ensure
convergence for any y < 2.

1 < p < 2

p> 2.
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The Smithies proof is very instructive. As a key ingredient it makes use

of the fact that the best mean square approximation to a given square-

integrable kernel K by degenerate kernels of the form

(4.5) K„ (x, y) Z an <X> t>„ (y) a„, bn e L2

occurs, for fixed N, when the an, bn are proportional to the singular functions
(j)n, Wn of K [25]. Indeed, if we carry out the details we find

K (x, y) Z an(x)b„(y)
n= 1

< K (x, y)-Z
n 1

N / i \ 2

ßn

(4.6) K z L)

i (-)2>
n N +1 VA4«/

where we have assumed that the singular functions are orthonormalized
and then employed (4.4). In the special case, moreover, when the an are the

appropriate normalized trigonometric functions, namely {s/l/n cos nx}
if s is even and {->/2/7i sin nx) if s is odd (recall the earlier discussion of
Section 3 where we imbued K with certain periodicity properties), and the

bn are the resulting Fourier coefficients of K (x, y) viewed as a function
of x alone, (4.6) takes the form

z
7Î=(V + 1

1)1
MnJ

K
N f

n= 1 Jo
b„(y) I

In fact, using essentially Parseval's relation, the right-hand side of this
inequality can be further rewritten as

(4.7)
oo / -j \ 2 oo

Z Ü < Z
n N + l \"n/ n N+l Jo

K(y) I

The intimate relationship that exists between the growth behavior of
the singular values associated with two-variable kernels and the asymptotic
character of allied classical one-variable Fourier coefficients is rather clearly
exhibited by the expression (4.7). This, then, is the essential relationship
which engenders the desired analogies. Care must be taken in carrying out
the details, however, to ensure that each of the K{r\ 0 < r < s - 1, is



— 154 —

continuous in the wide-sense, and thus some modification of the behavior
of the Kir) (x, y) for x 0, n may be necessary. Fortunately, this can be

accomplished with a degenerate perturbation which, as the following lemma
shows, leaves unchanged the fundamental asymptotics in question.

Lemma. *) Let K (x, y)9 L (x, y)9 a < x, y < b9 be two L 2 kernels which
differ by a degenerate kernel, i.e. K L + KN where KN has the form (4.5)
for some fixed positive integer N. Then their respective singular values

Pn (K)> Pn (L) satisfy

Pn-N (L) < Pn (K) < fin + N(L)

for all n > N, and hence

pn{K) OM iff pn(L) 0(n%

Returning to Theorem 4.2, although Smithies didn't use the fact, we
note that the special case s 0 is the precise analogue of the Fourier
series result Theorem 2.3. In view of Property 4, this case also contains the

analogues of the earlier Theorems 2.1, 2.2. Recalling Property 6, moreover,
the general case of Theorem 4.2 clearly is analogous to Theorem 2.8 and,
as such, actually generalizes to arbitrary p > la result alternatively established

for p 2 by Smithies' student Chang [9] (see also Gohberg and

Krein [16], pp. 119-123).

As in the Fourier series situation, the convexity of the class Lip (a, p)
plays an important and extremely useful role. Blending Property 7 with
Theorem 4.2, for example, we obtain the following extended analogy to
Theorem 2.6:

Theorem 4.3. If K^s)(x,y) belongs both to Lip (a, p) and to Lip (/?, q),
with p < q9 then (1 /pn)y converges for all y > p where p is as given
in Theorem 2.6 but with a, ß replaced by a + s, ß + s respectively.

In fashion similar to before, Properties 4, 5 then lead to the special cases

Theorem 4.4. If K(s) (x, y) is relatively uniformly of bounded variation
and also in Lip (ß, q) for some ß > 0, q > 1, then J] (1/Pn)y converges for
all y > p where p is as given in Theorem 2.9 ;

1) This particular Lemma is a special case of results of Fan [14]. Already in [24],
however, Smithies essentially had established the asymptotic invariance property of the
singular values under such perturbations.
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Theorem 4.5. If K{s)(x,y) belongs both to Lip (a,p) and to Lip ß,

then X (1/aO7 convergesfor all y > p where p is as given in Theorem 2.10.

Naturally, these theorems also contain the analogues of the Zygmund and

Waraszkiewicz results, Theorems 2.4, 2.5.

In closing it is worth remarking that all of the above kernel function
results are equally as sharp as the corresponding Fourier series results

since, as we have seen earlier, for periodic difference kernels the singular
values and the related Fourier coefficients are essentially reciprocals. In
view of the Weyl-Chang inequalities (4.2), moreover, these theorems amplify
and extend our knowledge concerning the growth behavior of the characteristic

values of "smooth" kernels (see [22], [11], for example).
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ERRATA

LATTICE POINTS INSIDE A CONVEX BODY

by G. D. Chakerian

(.L'Enseignement Mathématique 20 (1974), pp. 243-245).

It has been brought to my attention that the main theorem in my note
is not correct as stated. For example, if S is the integral lattice in R2 and

K is a square with sides parallel to the coordinate axes, then no homothetic

copy of K can contain exactly 3 points of S. The difficulty is that the

"equidistant sets" C (<7, b) used in the proof need not be nowhere dense, as

asserted in the paper. The theorem and proof however can be salvaged by
restricting K to be strictly convex. It also appears to be the case that the
theorem is correct if "homothetic" is replaced by "similar" in the statement,
without restricting K.

Reçu le 5 décembre 1975)

G. D. Chakerian
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