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2.7 COROLLARY. Let (S, Q), (S, Q') be symplectic torsors of genus g
over (J,e),(J',¢e), andlet X = S* 3" = S'*. Then, there are canonical

bijections

Isom ((J, e),(J ', e")) ~ Isom ((S,Q),(S", Q") g
~ Isom ((2, ), (27, Z,(4))) ‘

In particular, there are group isomorphisms

Sp(‘ja 6) = Sp(Sa Q) = AUt(z> 2(4)) .

§ 3 SYMPLECTIC TORSORS DEFINED BY FINITE SETS

In this paragraph, X will be a finite set.

3.1 The basic construction. Starting from X one has

A+B=AUB—-AnNnB A,Be2X

b) A map p: 2¥ - Z/2Z defined by
p(4) =[4](2) Ae2*

¢) A map e: 2% x 2¥ - Z/27Z defined by
e(A,B) = |AnB|(2) A4,Be2X
d) A map Q:2% — Z/2Z defined by
B| +1
Q(B) =L—'2~—(2> Be2?

whete 2% = p~! (1) is the set of subsets of odd order of X.

e) Amapgqg, = 2f — Z./2Z defined by

| A

go (4) = 7(2) Aer

where 2 = p~' (0).

Then, it is easily verified that

a) 2% is a vector space over Z/2Z, of dimension | X l
f) p is linear |

v) e is bilinear

a) The set 2% of subsets of X, with the operation of symmetric difference:

B e o O —— -
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d) Q has the following property (compare 1.1.1)
QB) +Q(A+B) +Q(A"+B) + Q(A+A"+B) = e(A4,A4")

whenever Be 2%, 4, 4’ € Zf
€) q,1s a quadratic form inducing the restriction of e to 2 f .

In the proof of these, one uses the following identity
|A+B| =|4|+|B|—=2|AnB| A,Be2*.

3.2 Let’s assume in the following three sections that X is of odd order,
| X| =29 + L.

3.2.1 PROPOSITION. The bilinear form e on 2 f is alternate and non-
degenerate. If Zf acts on 2% by translations, (2%, Q) is a symplectic
torsor over (Zf, e) which is even for g = 2,3 (4) and odd for g == 0, 1 (4).

3.2.2 Proof. It is clear that e is alternate on 2 f It is also non degenerate,
because if A4 er, A # ¢, let xe A; then A" = (X—A) U {x} is of even
order, and e (4, A") = 1. It is also clear that (2%, Q) is a symplectic torsor
over (2 f, e) (because of 3.1 ¢) and the definition of symplectic torsor.

To find out when this torsor is even or odd, we first observe that it is
clearly odd for g = 0, 1 (look at it), then apply descending induction using
the following fact (to be proved below). Let’s call ¢, the type of the torsor
corresponding to an X with | Xl =29 + 1 (and g > 2), thus ¢, = +1;
then e, = ¢,_; if g is odd, and ¢, = —¢,_; if g is even.

Proof of this fact: take a fixed 4, = X of order two. The set of Be2*
such that Q (B) = Q(4,+B) = 0 (recall that Q (B) = 0 means that
| B| = 1(4)) has cardinality 27~ " (29~ " +¢,) by definition of ¢, and prop-
osition 2.1.1. But clearly this number is also twice the cardinality of the
set of subsets C of X — A, such that | C| = 2g — 1 (4) (in fact any such B
defines a C by C = X — (4, uUB) and this map is two-fold) and the number
of these is 2972 (29" '+¢,_,) or 2972 (2" ' —¢,_,) according to 2g — 1
=1@4) or 2g — 1=13(4), i.e. g odd or even. This proves the fact and
completes the proof of the proposition.

3.3 If Q is odd, let us agree to modify Q in the way described in 1.1 to
obtain an even torsor 0. With this convention, the following notation will
be adopted:

Jxy =27 ex=c¢e
Sx = 2i( Qx =0

or O according to the value of g mod 4.
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The identification S, ~ QO (Jy, ex) in 1.4 may be made explicit: if
B e Sy, B becomes the following quadratic form

| A |
B(A) = |AnB| +-—=-(2).

Let’s now make explicit the condition for a triple (By, B,, B;) of elements
of either S ¥ or S% to be a triplet (2.3). This means that

QX(ZBi) =2 QX (Bi) >
and this is equivalent to
Z |B;nB;| =1(2),
i<j
or still to
lUB | =[nB[(2).

3.4 The quadratic form g, on Jy singled out in 3.1 e) corresponds through
the identification Q (Jy, eyx) = Sy to X itself. As Q(X)=g + 1(2), it
results from the last part of 3.2.1 that the Arf invariant of ¢, is O for

= 0,3(4), 1 for g =1, 2 (4). In other words, g, S% for g = 0, 3 (4),
g, €Sy forg=1,2(4).

3.5 Let’s assume in this and the next sections that X is of even order,
| X| = 2g + 2. Then, the linear map p passes to the quotient 2¥ / {0, X}.
This quotient identifies naturally with the set of partitions of X into two
subsets, and will be denoted P, (X). If p: P, (X) —» Z/2Z still denotes the
induced map, we will write

P;(X) = p~(0)
P;(X) =pt(1).
With respect to the bilinear form e, X is orthogonal to 2 f , then inducing
an alternate bilinear form, still denoted by e, on P3 (X). This form is non-

degenerate. To prove this, observe that if 4 €2, 4 different from @ and X,
and xe€ 4, x" ¢ A; then, if 4" = {x, x'},e(4, 4") = 1.

3.6 Two cases may appear in this situation.

a) g is even. Then, the map Q:2% - Z/2Z passes to the quotient
P, (X), so this becomes a symplectic torsor over (P;L (X), e). But in this
case the canonical quadratic form g, does not pass to the quotient P (X).

b) g is odd. Then, the map Q does not pass to the quotient, but g, does,
so there is a natural characteristic.
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3.7 The following construction would help in developing the case where
| X'| is even along the lines of 3.2-3.5, which I won’t do. Let X be of odd
order | X| = 2g + 1, and define X’ = XII{X}, thus | X' | =29 +2.
We have a natural linear map

2X — 2X/

and this is compatible with p, e, Q, ¢,. Composing this with the passage
to the quotient, I have a linear isomorphism

2X — PZ (X ,) s
and by compatibility with p, p’, isomorphisms

27 > P3(X")

2¥ 5 PL(X).

The first is compatible with e, ¢/, and with the canonical quadratic forms
if g is odd. The second is compatible with Q, Q' if g is even.

§ 4 BASIS AND FUNDAMENTAL SETS

4.1 Normal basis. Let (J, e) be a symplectic pair. A normal basis for
(/, e) 1s a basis (x;),r for J with the property that e (x;, x;) = 1 for i # j,
the set of ordered normal basis (i.e. for I = {1, ..., 2g} if 2¢g = dim J)
will be denoted ONB (J, e). The symplectic group Sp (J, e) clearly acts on
ONB (J, e) and it does it simply transitively, because if two ordered normal
bases for (J, e) are given, the unique linear automorphism transforming
one into the other is obviously symplectic.

I have not yet shown that the set ONB (J, e) is non-empty, this we will
see as a consequence of the following construction, that relates symplectic
basis (0.1) with normal basis. The set SB (J, e) of symplectic basis is a torsor
over Sp (J, e), thus if ONB (J, e) is non-empty, both torsors should be
isomorphic and indeed there would be as many isomorphisms as elements
in the group Sp (J, ¢). What 1 proceed to exhibit now is a definite iso-
morphism

a:SB(J,e) > ONB(J, e)
with inverse f. If

xeSB(J,e),x = (x4, ...,xg,xi, ...,x;)

let’s put y = « (x), then by definition
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