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3.7 The following construction would help in developing the case where
I X I is even along the lines of 3.2-3.5, which I won't do. Let X be of odd
order ] X \ 2g + 1, and define X' III {X}, thus | X7 | 2g + 2.

We have a natural linear map
2* - 2X'

and this is compatible with p, e, Q, q0. Composing this with the passage
to the quotient, I have a linear isomorphism

2x ^P2 (X '),
and by compatibility with p, p', isomorphisms

2x^Pt (X ')

2X P2 (X ').

The first is compatible with e, e\ and with the canonical quadratic forms
if g is odd. The second is compatible with <2, Q' if g is even.

§ 4 Basis and fundamental sets

4.1 Normal basis. Let (J, e) be a symplectic pair. A normal basis for
(/, e) is a basis (xt)ieI for J with the property that e (xb Xj) 1 for i =£ j,
the set of ordered normal basis (i.e. for I {1, 2g] if 2g dim J)
will be denoted ONB (/, e). The symplectic group Sp (/, e) clearly acts on
ONB (/, e) and it does it simply transitively, because if two ordered normal
bases for (/, e) are given, the unique linear automorphism transforming
one into the other is obviously symplectic.

I have not yet shown that the set ONB (/, e) is non-empty, this we will
see as a consequence of the following construction, that relates symplectic
basis (0.1) with normal basis. The set SB (/, e) of symplectic basis is a torsor
over Sp (/, e), thus if ONB (/, e) is non-empty, both torsors should be

isomorphic and indeed there would be as many isomorphisms as elements

in the group Sp (/, e). What I proceed to exhibit now is a definite
isomorphism

a: SB (J, e) -> ONB (J, e)

with inverse ß. If

xe SB (J, e), x (xl9 ...9xgix'X9 ...9x'g)

let's put y a (a), then by definition
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J>2fc-1 X1 + + X/c + X1 + + Xk~ 1

j2k + + ^/c-i + *i + ••• + xk k ~ 1? •••># •

As for the inverse, if y e OA£ (/, e), and x then one gets from the

definition of a

Xk — Jl + ••• + y2k —2 + 3>2fc-l

X* };1 + + y2k~2 + y2k k 1, ...,^ •

It is clear from this definition that a is compatible with the actions

of Sp (/, e) on both sets.

4.2 Azygetic sets. Let (S, Q) be a symplectic torsor over a symplectic

pair (/, e). A subset A <z S is azygetic if for any three different elements

s1,s2,s3eA one has Q (sx) + Q (s2) + Q(s3) + 0(^1+^2 + ^3) 1» or

equivalently if e (sl9 +s2, ^1+^3) — L A is homogeneous if Q is constant on

it, i.e. if either ^cS+or^cS-. And the subset A is linearly independent

if for some (or equivalently, for any) s e A, the subset s + (A - {5}) cz J is

linearly independent, or equivalently if A + A spans a subspace of J of
dimension | A | — 1.

Let A be an azygetic subset, se A, and let B s + (A- {5}), I will
show that the only possible linear relation on B is I x 0. Indeed,

XeB

if I Axx 0 is such a relation, for any y e B, one has

0 e(y, J^Âxe(y,x) £ Ax
x X xeB

x ¥= yI^ o
x^y

Adding these equations for any y, y' e B, one concludes that Ay Ay,
which was to be shown. As a consequence of this, it follows that any
azygetic subset of odd order is linearly independent, and that an azygetic
subset has at most 2g + 2 elements. It is easy to verify that if A is an
azygetic subset of odd order and if s — 1 t, A u {s} is still azygetic.

teA

4.3 Basis for symplectic torsors. A basis for a symplectic torsor ÇS, Q)
over (/, e) is a maximal homogeneous, linearly independent, azygetic subset

of S. A basis has exactly 2# + 1 elements, where g is the genus of (S, Q).
This comes from the fact that any symplectic torsor is isomorphic to one
of the form (Sx, Qx) constructed in § 3 because of the uniqueness result in
1.4, that for Sx, X c Sx is clearly a basis with 2# + 1 elements, and that
a linearly independent subset can have at most 2g + \ elements.
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The set of ordered basis for (S, Q) will be denoted by OB (S, Q), the

group Sp (;S, Q) acts on it.
The following construction is fundamental. Let X a S be a basis, we

have then a map
FX:2X-+E(S)

(cf. 1.5.a) for the definition of E (S)), defined by

Fx (A) £ s
seA

It is clear that Fx is a group homomorphism, that sends subsets of X
of even (resp. odd) order into J (resp. S), thereby inducing a linear
homomorphism

<7*: 2 * -
and a map compatible with the respective group actions

fx' 2X_^S.

To proceed further, let's choose a total order on X, X {s0,..., s2g).

Then, the Xt {s0, st} (resp. xt ^ s0 + st) for i =* 1,..., 2g constitute an
ordered normal basis for 2X (resp. /), and as ax (Xt) xt we have that ox
is a symplectic isomorphism. It follows that fx is a bijection, and indeed fx
defines an isomorphism of symplectic torsors between (Sx, Qx) and (S, Q).
To see this, we have to prove that ifA, A' a X are such that | A | | A'\ (4),
then

6Œ^) ô(E s).
seA seA'

We know that Q is constant on X, and the condition on X of being azygetic
means that for any three different $x, s2, e X, Q (sx +^2+^3) is different
from the value of Q on X. From this remark, the fact to be proved follows
easily by induction and using the defining property (1.1.1) of symplectic
torsors. For example, if | A | 5, and we order A {sx, j5}, we have

Q (^5i) + Q (5i) Q (si + s2 + S3) + Q (5i + 54 + s5)

because e (s2+s3, s4 + s5) 0, thus

Q(s±) Q(ZSi).

Summing up: starting from a basis X c S, one gets an isomorphism
of symplectic pairs

ax: (Jx> ex) ,e)
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underlying an isomorphism of symplectic torsors

fx'- ($x> Qx) (^5 6) •

As a consequence of this, we have that a basis is necessarily contained

in S+ for g 0, 1 (4), in S~ for g 2, 3 (4) (cf. 3.2.1).

4.4 Proposition. The set OB (S, Q) of ordered basis for a symplectic

torsor (S, ß) A a torsor over the group Sp (S, Q). Moreover, z7z£ map

OB{S, Q)->ONB (J, e)

defined by
!-> (50 +

is an isomorphism of torsors over Sp (£, ß) ^ Sp (/, c).

4.4.1 Proof The map defined above is clearly compatible with the

actions of Sp (S, ß), S/? (/, e) and the isomorphism between these groups
described in 1.4. To prove the proposition, it is enough to show that this

map is bijective. As OB (S, Q) is non-empty and ONB (/, e) is a torsor,
this map is onto. It is injective too, because starting from the xt s0 + st

I can recover the st in the following way. If s I sh by the identification

S ~ Q(J, e) in 1.5, s corresponds to the unique quadratic form qs on J
whose value on each of the xt is 1 as it can be easily seen, thus s can be

defined in terms of the xt; but then

Si 5 H- y Xj(fi<i<2g, l<;<2gf).
s*i

4.5 Fundamental sets. A fundamental set for a symplectic torsor (S, Q) is

a maximal azygetic subset F a S. Any basis X for S defines a fundamental
set, it suffices to put Fx X u {„%}, where % Is. Also, if F is a

seX

fundamental set and if x g J, x + F is a fundamental set too, as it is easily
seen. In fact, for any fundamental set i7, there exists a basis X and an
x e J such that F x + Fx. Let F {tm t2g+1} be an ordering of F,
it is clear that if

xi — to + tt (1 <j<^2g + 1)

the xt for 1 < i < 2g constitute a normal basis for /, thus there exists a
unique ordered basis X {^0, s2g) for S such that xt s0 + st (4.4).
Then, if x s0 + t0, we have tt x + %, because I tt 0 and
SX ~ % Sr

Observe that a fundamental set arising from a basis is homogeneous
iff g is even. Indeed, it is homogeneous iff 2g + 1 1 (4), i.e. iff g is even.
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It follows from the last part of prop. 3.2.1 that, in this case, the number of
odd characteristics in the fundamental sets is congruent to g mod 4. We
will see that this is a general fact.

4.5.1 Proposition. Let O (.F) be the number of odd characteristics in

a fundamental set F. Then O (F) ~ g (4). Conversely, for any I g (4),
and I < 2g + 2, there are fundamental sets F with O (.F) /.

4.5.2 Proof We may safely restrict ourselves to the case where the

symplectic torsor is Sx with its standard basis X, and F {A} + (X u {X})
where A cz X is of even order | A | =2k (cf. 4.3). Then, in F there are
2k characteristics corresponding to subsets of X with 2k — 1 elements,
2 (g — k) + 1 characteristics with 2k + 1 elements, and 1 characteristic
with 2 (g — k) + 1 elements, namely the ones obtained adding A to
respectively the characteristics of the form {s} {s} (s£A), X. When g
is even the second and third types have the same parity; when g is odd the
first and third types have the same parity. From these remarks, it is easy to
see that the number of elements of the same parity in F and X u {X} are

congruent mod 4, and that with this only restriction, this number can be

arbitrary for F by conveniently choosing A. The proposition follows from
this and from what was said just before its statement.

4.5.3 In Coble [1], additional material on fundamental sets may be

found.
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