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CHARACTERISTIC NUMBERS OF 3-MANIFOLDS *)

by J. Milnor and W. Thurston

This is a brief report on work which will be published in detail elsewhere.

All manifolds are to be closed and connected. By a characteristic number

of a manifold M, we will mean a real valued topological invariant cp (M)

with the following multiplicative property. If cp (M) is defined, and M

is a k-sheeted covering manifold of M, then cp (M) should be defined and

equal to kcp (M). This definition makes sense in any dimension, but we will
concentrate on the 3-dimensional case.

First let us describe some examples of characteristic numbers which

are defined only for very special manifolds.
We will say that a manifold H of dimension n > 2 is hyperbolic if it

admits a Riemannian metric with all sectional curvatures —1. The n-
dimensional volume v (H) of such a manifold is a topological invariant.

(In fact if 77 > 3 one can make the sharper statement that the fundamental

group determines H up to isometry. Compare [Mostow].) Clearly this
volume v (H) satisfies the multiplicative property above, and hence is a

characteristic number of H.
In the even dimensional case n 2m, this volume can be computed

by the generalized Gauss-Bonnet theorem, and is equal to the integer

\x(H)\ multiplied by the constant v(S2m)/2 (27t)w/(U3*5 ••• (2m — I)).
By way of contrast, in odd dimensions and in particular for n 3, nothing
at all is known about the number theoretic properties of these volumes
v (//). It may be conjectured that there exist countably many hyperbolic
3-manifolds H{, //2, so that the real numbers v (Hfi, v (J?2), are
linearly independent over the rational numbers. (If v (Hfijv (H2) is irrational,
it follows of course that no finite covering manifold of Hl can be homeo-
morphic to a finite covering manifold of H2.)

Similarly, if the manifold M has a Riemannian metric with all sectional
curvatures + 1, then the associated volume v (M) is a topological invariant.
However, in this case the sphere Sn is a finite covering manifold of M, so

x) Presented at the Colloquium on Topology and Algebra, April 1977, Zurich.
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v (M) is just the constant v (Sn) divided by the order of the fundamental

group.
R. Kulkarni has pointed out that there is a third class of closed 3-

manifolds of constant curvature, namely those which possess a Lorentz
metric (i.e., a pseudo-Riemannian metric of signature +, —, — with
constant sectional curvature + 1.

Examples can be constructed as follows. Consider the projective special
linear group G PSL (2, R) acting on the upper half-plane H2. The

Killing metric trace (ad (x) ad (y)) on the Lie algebra of G, multiplied by a

constant factor of —1/8, gives rise to a left and right invariant Lorentz
metric on G which has constant curvature +1. Choosing any discrete co-

compact subgroup L, the quotient M GIT will be a closed 3-manifold
which inherits a Lorentz metric of curvature + 1.

To compute the Lorentz volume v (M), first choose a subgroup f c f
of finite index k which is torsionfree. The associated k-fold covering manifold

M G/r can be identified with the unit tangent bundle of the hyperbolic

surface B H2/r. Hence the volume v (M) is proportional to the

area of B, which can be calculated by the Gauss-Bonnet theorem. In this

way, one sees that

v (M) I x (B) I ti2/2

It follows that the original volume v (M) is equal to | % (B) | 7i2/2k. In
particular, v (M) is always a rational multiple of n2\2.

Lurthermore this volume is a topological invariant, and hence a characteristic

number of M. The following result is essentially due to [Bailey].

Theorem 1. Let M be any 3-manifold such that some k-fold covering

manifold M fibers as a circle bundle with Euler number e ^ 0 over a surface
B. Then the rational number %{B)2jk | e\ is a well defined characteristic
number of M.

In other words, this ratio does not depend on the particular choice of

M or the particular choice of fibration. In the special case M G/T

considered above, where M can be chosen as the tangent circle bundle of
B with Euler number e — ± % (B), this characteristic number x {B)2jk | e |

I XO#) |/£ can be described as the Lorentz volume v(M) divided by n2/2.
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The proof of Theorem 1 is based on the observation that a fibration

of M by circles gives rise to a fibration of any finite covering manifold of M
by circles. Details will be omitted.

More generally, if M is an arbitrary Lorentz 3-manifold of curvature
+ 1, it would be interesting to know whether v (M) is a topological invariant,
or whether it is necessarily a rational multiple of 7i2/2.

Now let us give an example of a characteristic number which is defined
for arbitrary closed 3-manifolds M. First define an integer valued invariant

I (M) as follows. Let I (M) be the smallest possible number of 3-simplices

which can be used to triangulate M. If M is a /c-sheeted covering of M,
then evidently

I (M) < k I (M)
Now define

a (M) inf { I (M)/k }

taking the infimum over all finite covering manifolds of M. It follows easily
that g (M) is a well defined, real valued characteristic number, with
0 < ex (M) < I (M).

In the special case of a hyperbolic manifold H, we will show that a (H)
is never zero by proving the inequality

a (H)>v (H)/v0 > 0

Here the constant

3x/37 111 \
V°" 4 y+42-52 +-•••] 1-0149416...

is defined to be the supremum of the volumes of geodesic 3-simplices in
hyperbolic space. (Compare [Coxeter].)

More generally, consider the following situation. Let M and H be
oriented, with H hyperbolic.

Theorem 2. If there exists a map -> ofdegree d, then a (M)
>\d\v (H)/v0.

Applying this theorem to the identity map of H, we obtain the inequality
cr (H) > v (H)/v0 mentioned above. (In the case of a non-orientable hyperbolic

manifold, one must first pass to the orientable two-fold covering
manifold in order to apply this argument.)

Outline proof of Theorem 2. Choose a triangulation of M with the

minimum number I(M)of3-simplices. Let/: -> be the induced map
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of universal covering spaces. After an equivariant homotopy, we may
A A

assume that / maps each simplex of M to a geodesic simplex in the hyper-
A

bolic 3-space H. Hence each simplex A of M maps to a set /(A) of volume
less than v0 in H. Since a general point of H must be covered at least ] d |

times, it follows that I (M) v0 > | d | v (H). Similarly, for a k-fold covering

M of M, it follows that

I (M)v0 > \kd\v (H)

Dividing by v0k and taking the infimum over all finite coverings, we obtain
er (M) > I d I v (H)/v0, as required.

This result suggests the conjecture1) that for every map / : H H'
between oriented hyperbolic 3-manifolds the inequality

should be satisfied. The analogous inequality for mappings between hyperbolic

surfaces was proved by [Kneser].
We are able to prove the following. Let H0 be hyperbolic.

Theorem 3. There exists a characteristic number cp (M), defined for
all 3-manifolds, so that (p (H0) > 0, and so that

cp (M) > I d I (p (N)

whenever there exists a map M -» N of degree d between orien ted manifolds

M and N.

The proof will be based on the following.

Definition. A virtual map M - - > N will mean a pair consisting of a

not necessarily connected finite covering manifold of M, with projection

p\ M -> M, together with a map/ : M N. The composition of two virtual

maps M - - > N - -> P is a virtual map M - - > P which is readily
constructed from the following diagram

M x N
/NX/ \

M N
/ \ / \/ \ / \

M > N > P

x) Added in proof. This conjecture has recently been proved by M. Gromov.
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(Note that the product of M and TV over TV need not be connected, even

if both M and TV are connected.)

If both M and TV are oriented then, giving M the induced orientation,

the degree of a virtual map M - - > TV is defined to be the degree of/ : M
-» TV divided by the number of sheets of the covering (or divided by the

degree oïp : M -> M). One can check that the degree of a composition equals
the product of the degrees.

Now consider all possible virtual maps from M to TV, and let s (M/TV)
denote the supremum of the absolute values of their degrees. Evidently

0 < s (MITV) < oo

This supremum definitely can be infinite, for example when the target
manifold TV is the sphere S3. On the other hand, if the target manifold
is hyperbolic, then the inequality

s (MI H) < v0(T (M)/v (H) < oo

follows easily from Theorem 2. Note the inequality

j {M/P) > s (MjN) s (N/P)

(where the product 0. oo must be interpreted as 0). In the case M TV P,
it follows from this inequality that s(M/M) can only be either 1 or oo.

For example, s(H/H) 1 but s (S3/S3) oo.

Proof of Theorem 3. Fixing some oriented hyperbolic manifold H0,
define

cp (M) s (MIH0)

whenever M is orientable. This is a well defined characteristic number,
with cp (H0) 1, and with

cp(M)>s (MIN) cp (N) >\d\cp(N)
whenever there exists a map from AT to TV of degree d. The definition can

be extended to a non-orientable M by setting cp (M) cp (M)f2, where

M is the orientable two-sheeted covering of M.
Other examples of characteristic numbers will be described in a more

detailed manuscript, now in preparation. Some of these characteristic
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numbers will be defined only for oriented manifolds and will definitely
depend on orientation. Others will depend only on the fundamental group
of M.
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