Chapter 5. — Dimension of the space of linear
superpositions

Objekttyp:  Chapter

Zeitschrift:  L'Enseignement Mathématique

Band (Jahr): 23 (1977)

Heft 1-2: L'ENSEIGNEMENT MATHEMATIQUE

PDF erstellt am: 26.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



— 302 —

CHAPTER 5. — DIMENSION OF THE SPACE OF LINEAR SUPERPOSITIONS

In this chapter we present a calculation of the functional dimension of the
space of functions representable by means of linear superpositions and prove
that a representation of analytic functions by means superpositions of
smooth functions can not be stable.

§ 1. (e, d)-entropy and the “dimension” of function spaces

Let G, be a closed region of n-dimensional euclidean space, and C (G,)
the space of all functions continuous in G,. Two functions f; (x), f, (x)
e C(G,) are called (e, §)-distinguishable if there exists an n-dimensional
closed sphere S; = G, of radius ¢ such that

min [fi(x) =f,(x)| > ¢
xeSg

Let F < C(G,) be a set of continuous functions. A subset K < F is
called (e, 0)-distinguishable if any two of its elements are (g, ¢)-distinguish-
able. We denote by N,;(F) the maximum number of elements in an
(¢, 0)-distinguishable subset of F.

Definition 5.1.1. The number H,;(F) = log, N,;(F), by analogy
with the definition of e-entropy, is called the (g, 6)-entropy of F.

Let f, € F. We denote by F,, (f,) the set of functions fe F such that
| f(x) = fo (x)| < Je. It follows immediately from the definition that the

i e logy Hyg (F;.g (fo))
expression lim Iim — - -

6-0 -0 ; log,d
as 1 — .

as a function of 4 does not decrease

Definition 5.1.2. The number
— = logy Hy5(F i (fo)
r(F,fo) = lim lim lim - 2 Hos (P2 (/o)
Amom 620 -0 log,0
is called the functional “dimension” of F at f,. The number r (F)
= sup (F, f,) is called the functional “dimension” of F.

The functional “dimension” r (F) of a set of functions F < C(G,)
has the following properties.
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5.1.1. Let @ < F be a set of functions. Then r () < r (F). Moreover,
if ¢ is everywhere dense in F in the uniform metric, then r(®) = r(F).

Proof. The first part of the assertion follows immediately from the
definition. For a proof of the second part it is sufficient to show that r (@, @)
> r (F, ¢,) for any element ¢, € ®. Suppose that the functions fi, ..., /'y
from a (2 ¢, d)-distinguishable subset of F,, (¢,). Since ¢ is everywhere
dense in F, there exist functions ¢4, ..., ¢y € P such that mezx |f,« (x) — @;(x) |

< min (%, As) (i=1, 2, ..., N). These functions form an (¢g,0)-distinguishable

subset of F,;, (¢,). Consequently N, ;(P;;,(¢0)) =Ny (Fzs (900))-
Hence r (@, @) = r (F, ¢,).

5.1.2. For any set F < C(G,) we have r (F) < n.

Proof. Suppose that f, e F and fi, f5, ..., f, is a maximal set (with
respect to p) of pairwise (g, 6)-distinguishable functions of F,, (f,). Let
0y, 0,, ..., 0, be a maximal set (with respect to g) of spheres of radius 9/3
in G,, such that no two of them have common interior points. Then any
pair of functions f; (x) and f; (x) of the given set satisfies on at least one
of the spheres g, the inequality min lfi (x) = f; (x) | > ¢. For the func-

Xea]

tions f;(x) and f;(x) satisfly on some sphere S; = G, the inequality
min lf,- (x) = f; (%) [ > ¢. Since ¢ is maximal, it follows that one of the

spheies g, < §s;. Consequently on this sphere the inequality we need is
satisfied. We denote by a; the centre of the sphere g, (/ =1, 2, ..., g). Every
set of functions fips figs > fi, €ach pair of which has values differing by not
less than ¢ at one and the same point consists of a number r <2 1 + 1
of functions. (All functions are taken from the set indicated above.) Since
every pair of functions f; (x) and f ; (x) has values differing by not less than
¢ at one of the points g, at least, we have p <C 21 + 1. But since the spheres
{ 0;} do not intersect, ¢ << C/d", where C is a constant depending only on
n. Consequently,
C

511
log, log, (21 +1
F(Ffo) < lim lim lim — 082 108224+ D

Aovon 620 £-0 log,0

5.1.3. If F is everywhere dense (in the uniform metric) in the space
C(G,), then r (F) = n. In particular r (C (G,)) = n.
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Proof. By 5.1.1 and 5.1.2 it is sufficient to show that r (C(G,)) > n.
We denote by C, (G,) the set of all f(x) e C (G,) for which max | f(x) | <e.

xeGp
Let 0 > 0O be a constant such that for any 6 > 0 we can find H = [0/5"]
closed and pairwise non-intersecting spheres o,, 0,, ..., oy of radius ¢
in G,. For any system of numbers { «;} (a;= +1, i=1,2, ..., H) we construct

a function f,,, (x)e C,(G,) such that f, (x) = ae for xeo;
(i=1,2,..., H). These functions are obviously pairwise (g,0)-distinguishable.
The number of functions S (a;y (x) for all possible sets { o; } is equal to 28
Consequently H, ;(C, (G,)) > H = [0/6"]. Hence r (C (G)) > n.

COROLLARY 5.1.1. The space of all polynomials in n variables has
Jfunctional “dimension” n.

-In the same way, the following properties are easily proved.

5.1.4. Let G, and G? be two non-intersecting closed regions in #- dimen-
sional space, and F (G, U G?) a space of functions, defined and continuous
on G, U G?. Denote by F (G,) the space of all functions ¢ (x), defined on
the set G,, for which there exists a function @ (x) € F(G! U G?) such that
@ (x) = @ (x) for x € G.. The space F(G?) is defined similarly. Then

r(F(G,uG)) = max {r(F(G,); r(F(G))}.

5.1.5. If F is a linear space, then-r (F) = r (F, f,) for any function
fo € F. If F is a finite-dimensional linear space, then r (F) = 0.

5.1.6. Let F be a linear metric space with metric p (¢, ¥) between a pair
of functions ¢, v € F. We denote by F (p,) the set of all those functions
@ € F for which p (¢, 0) < p,. Then r (F) = r (F(py)).

COROLLARY 5.1.2. The set of all polynomials in n  variables whose
partial derivatives of order p, forany p = 1, 2, ..., are bounded by a constant
0 < K, < oo has functional “dimension” n.

5.1.7. Let F be a complete linear metric space and F = U F,, where
i=1
{ F; } are sets of continuous functions. Then r (F) = max r (F)).

i

We now write down the main result on the functional “dimension”
of a set of linear superpositions.

5.1.8. Let ¢g; = ¢q; (x4, X5, ..., X,) be continuously differentiable func-
tions of n variables, and p; = p; (x4, x5, ..., X,) continuous functions of »
variables (i =1, 2, ..., N). We denote by F (G,, { p; }, { ¢; }) the set of super-




|
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N
positions of the form Y p;(xy, X, oy X,) i (¢; (X1, X3, o0y X)), Where
i=1
(xy, X3, ..., X,) € G,, and { f; (¢) } are arbitrary continuous functions of one
variable. Then in any region D, there exists a closed subregion G, < D,
such that

r(F(Gna {pi}’ {ql}))< 1.

For ease of presentation we limit the proof to the case n = 2 (8§ 3).
It is interesting to compare the result 5.1.8 with the following proposition.

n

5.1.9. Let ai(xl,x:z,‘..,xn) —_ Z OCU(XJ) (l =1,72,..., 2”"*—])

i=1

be the continuous functions involved in Kolmogorov’s formula (I).
We denote by Y (G,, a;) the space of all functions of the form
W (o (xy, X5, ..y X)), Where W (7) is an arbitrary continuous function of
one variable and (x,, x,, ..., x,) € G,. Then for any i and every region G,
r( (G, a;)) = n (see 5.1.7).

Let p;(xy, X,, ..., x,) be fixed continuous functions of n variables,
q1.i (X1, Xgs oo0s X)), o (X1, Xgy coy X))y ooy @i (Xg, X5, .o, x,)  fixed  con-
tinuously differentiable functions of n variables, and f; (¢,, ¢,, ..., #;) arbitrary
continuous functions of k variables, Kk <n (i=1,2,..., N). One would
expect that the set of superpositions of the form (V) (see Chapter I) has
functional “dimension” not greater than k. However, in this direction, only
the following partial result has so far been proved.

5.1.10. Denote by F(A G, {p;},{q1.i}> - { qc;}) the set of all
those continuous functions ¢ (x,, x,, ..., x,) for which there exist continuous
functions { f; (¢4, t,, ..., #;) } such that in G,.

QD (xlﬂ x2> smey xn)

I
M =

) pi (xl > x2> treo xn)fi (ql,i (xlo x27 seey xn): fe ey CIk,i (x1> x2> ey xrr))

i

and

max sup Iﬂ(tlthQ"'th)l < l sup I(/)(xlax?,a“-axn) |
i (1. t9, 5., t}) (X1, x2, ..., xp) eGpy

Then, for any A < oo, in any region D, there exists a closed subregion
G, < D, such that

F(F(ﬂw Gn: { pi}a{ql,i}a ) {Qk,i})a O) < k'

From the last result and Banach’s open mapping theorem there follows

L’Enseignement mathém., t. XXI1II, fasc. 3-4. 21
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CorOLLARY 5.1.3. For any continuous functions p, and continuously
differentiable functions qy ;,q, ;5 ..., Gk < n (i=1,2,.., N) and every
region G, there exists a continuous function that is not equal in G, to any
superposition of the form (V).

§ 2. (g, 0)-entropy of the set of linear superpositions

We denote by S (0, z) the disc of radius 6 with centre at z. Let p (2)
= p(x,y) and g (z) = g (x, y) be functions defined in a closed region G
of the x, y-plane and having the properties: ,
aq (x, 0q (x, . X
a) p(x,y), q; ) , qg V) are continuous in G and have modulus
X y
of continuity w (9),

1 1
b) the inequalities 0 < y <{| grad [¢ (r)] | <—and | p (z) | <—, where
Y 7

y 1s some constant, are satisfied everywhere in G.

LemMMA 5.2.1. Let S(0,z) = G andlet p,(t) be the function equal to
2 \/ 6* — (t—q (2))* | grad [¢ (2)] |7 on

q(z) — 9| grad [q(2)] | <t<q(2) + 8| grad [q(2)]]

and equal to zero elsewhere. Then

[ L) = By (e(@. 1) S5, 2) | di < e, () (8) 5,
where ¢y (y) is a constant depending only on y.

Proof. Let [a,b] < e(q,t) n S (9, z) be the segment of the level curve
e(q,t), endpoints a and b, lying on the boundary of S (0, z); [z, a] and [z, b]
the vectors with origin at z and endpoints at a and b, respectively;

v, =y([z al, grad [q(2)]), @, = y([z,b], grad [q(2)]).
We have '
a—q— ds

lt—q()| =|q@ —q()]| = l § 5

se [z,a]

— 5§ cos oy | grad [g(2)]] (1 +0(1) w(d))
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Hence

o sin o, = /& — (1 —q(2) + 0() 0w (9)?| grad [q(2)]]?

and similarly

5 sin oy = /6% = (t —q(2) +0(y) 6 (9))* | grad [q(2)] |2

By b) the size of the angle swept out by the tangent vector to the level curve
e (g, t) on moving along [a, b] does not exceed C, (y) w (). Therefore

hy([a, b]) = 6 (sinay +sina,) (1 +0(p) @ (9))
= 2/8~ (t—q(2) +0(y) 6w (9))*| grad [q()]| > + 0() 6w (5).

Ifo; = C; (y) w (9) (Cs is a sufficiently large constant), then [a, b] = e (q, t)
N S (9, z). Consequently, for

1= q(2)| <0 = 5cos [C;w ()] | grad [9 )] ] x (1+0(1) w (8))
we have 7, (e (g, 1) n S (9, z)) = hy ([a, b]). Since for every ¢ (by b))

hy(e(g, 1) S(6,2)) <C,(MNS(l+w 9),

we have
J [ hi(e(@, D0 S8, 2) =, (1] dr =
q(z) +0
= J @D ns6.2) —u,0]é +00) 50 G).

We now estimate

4 (z) 4 O
S (@D nS(6,2) = () |dr =
q(z) —
q(z) 4+ @
= | |h(a,b]) = p,0)]dt <
q(z) —0
q(z) + O

<2 [ (J@-(1—9(2)+0() 0 (8)*]| grad [q()]| >

q(z) — O

~ /0"~ (t=q(2)*] grad [q (2] | ?)dt + 0() 6% ()

! d
= 0 F0() |y + 00 F0 ) = 06) 5% (0).

-1 L — 7

Here we have the mean value theorem. This proves the lemma.
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LemmA 5.2.2. Let p(z2),q(z) satisfy conditions a) and b); S (9, z)
< G; let f(t) be an arbitrary continuous function, uniformly bounded in
modulus by the constant m. Then

I i p (,9) f(q (u,v)) dudv

(u,v) e S (9, z)
= p@)| grad [g (][ [ 7O, () dt + A mF0 (),
where | A(z) | < Cs ().

Proof. Using a) and b) and Lemma 5.2.1 we have
I pu,v)f(qu,v))dudo

S(d,z)
=p ]  flg,v)dudv + 0(1) mé*w(6)
(u,v) eS (0, z)
=p(2) | {f(®) ( )jS(5 | | grad [q(s)] | %ds}dt -+ 0(1) mé*w (5)
— w0 see (g, 1) n ,Z) :

=p@| erad 0@ ] O [ dshdi +0G)mie ()

see (q,t) nS (9, z)

= p(@)| srad [g@]|7 [ )by (e(@, DS G, ) dt +0() mbo ()

= p() | grad [q@]]7* [ O, di + 00) mde (5).

This proves the lemma.

LEMMA 5.2.3. Suppose that a number o > 0 and functions p (z),
q (2), f(t) satisfying the conditions of Lemma 5.2.2. are given. If for every
integer k such that

o
min g (z) <t, =ko— < max ¢(2)
m

zeG zeG
and any integer | such that
, o
min | grad [¢(2)]| <t = 1— < max | grad [¢q(2)]],
zeG m zeG

the inequality

tk_}_t;é f—¢ 2
[AO Jaz --< "> dt | < 0d?

th—1,9 g
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is satisfied, then for every disc S (6,z) = G
| ] pw,v)f(q(u,v)dudv | < 6 (7) (20 +md*w (9)) -

(u, v) eS (0, z)

Proof. Suppose that a disc S (3, z) = G is given. By the condition of the
lemma there are integers k and [ such that |g(z) — #,| < da/m and
|| grad [¢ (2)]| — t/ | < «/m. From Lemma 5.2.2 we obtain

| p(2) ]
u dudv | < -
l(u, v) £S (s, z)p w, U)f(q w, 7))) e l 1 grad [q (2)]

g (z) +
+5lgrad [q (Z)]l

2 —~ 2 2 t"—q(z))
s () moe(9) /\)72‘ ! j i \/ ° | grad [q(2)] |

| I_I ormora

q(z) —

— 0] grad [q (2) 1]
z,mLt'a

f f(t)\/éz /"‘, k>2dt

t 1

2
+ — ad” + cs(y) mé*w (0) <
¥

(by the mean value theorem)

2 2 omdrt o
— ad® + ¢5(7) moé*w (d) + < J 7 2> o —
y .

m

1

2 52mdr ‘

+ — < /1 > 2 < < ¢ (p) (06” + m*w (9)) .
—17?

This proves the lemma.

WC denOte by En = m (D pla Pas - '7pN; CI1a qos ees QN) the set Of
superpositions of the form

f(xa y) = 'Zl pi(xay)fi(qi(xay))a Where {pi(x> y)}

and { g; (x, y) } are fixed functions, defined in the closed region D of the
x, y plane and satisfying conditions a) and b) with a constant y not depending
on i and {f;(¢)} are arbitrary continuous functions, defined on { [a;, b] }

= {[ min ¢;(2); max ¢;(z)]} and uniformly bounded in modulus by
ze D ze D

the constant m.
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THEOREM 5.2.1. There exist constants A and B such that if ¢ > Amw(5)
B /m\?
then for the (e, 0)-entropy of the set of functions F,, H, ;(F,) < F <—> ,

g
where A and B depend only on y, N and D.

—}3 Jf f(u,v) dudv
7o

(u,v)e S (4,2)

 Proof. We put
R(f(z),0) = max

S (3,z)=D

We denote by 7, ; (F,,) the e-entropy of the space F,,, taking as the distance
between the functions f; (z), f, (2) € F,, the number R (f; (z)— 15 (2), J).
The inequality H,, ; (F,) << o, s (F,) holds owing to the fact that if two
functions f; (z) and f, (z) are (e, 0)-distinguishable, then they are e-dis-
tinguishable also in the sense of the metric R (f; (z)— f (2), d). We now
estimate the value of S, ; (F,,). Let k and / be integers such that

min q;(z) < t, = k5 — < max g, (z)

zeD m ze D
and '
, o
min | grad [¢;(2)]| <1 = l~n; < max | grad [¢;(2)]] .
zeD ze D

To compute the function

1 N
f5(2) = —5 JJ f(u,v) dudv ,
(u v)eS(9,2)

where f(x, y) € F,,, S (0, z) < D to within g, it is sufficient by Lemma 5.2.3
to give the values of

tk+tl§

v, (L, 1) = J f(z)\/éz (7“‘) dt

tj, — t]o

to within « = 7e / (2 NCg (y)) and to assume that é is small enough so
that

2NC,(y) mw(6)
>

T

= A(y, N) mow (9) .

Since [ v, (t, 1)) | < C, m, to write the numbers v, (¢, 1) (i, k, [ fixed)
log, (C; m/x) binary digits are sufficient. Since



— 311 —

1

, ; 1 T oomdt \ |«
lvi (tee 1> 1) — Vi (B 1) | < Cg -\7-’) 0— = ¢o(y)a
=1

8 1 —12/ m

(here we again use the mean value theorem), to store the numbers
v (tes1, 1) — vi (4, 1)) to within «, log, Co binary digits are sufficient.
Therefore to write the numbers v; (#,, t;) (i, / fixed; k any admissible number)

Cio () [loggm - (bi-—ai) ;] = #;, binary digits are sufficient. Con-
o o

sequently the total number of digits sufficient to store all the numbers
v, (f,, t7) to within «, that is, to store the functions /5 (z) to within ¢, is

m m11m  B(y,N,D) /m\?
H o=y Hiy <Ncio©®) |log, — + (bi—a) “—<W—<— :
T o ol y o 0 g

This proves the theorem.

§ 3. Functional “dimension” of the space of linear superpositions

Suppose that continuous functions p; (x, y) and continuously differenti-
able functions ¢q; (x, y) (i=1, 2, ..., N) are fixed. Let G be a closed region
of the x, y plane. We denote by F = F(G, { p;}, { g, }) the set of super-

N

positions of the form f(x,») = Y p;(x,»)f;(q:(x,y)), where (x,y)e G
i=1

and {f;(z)} are arbitrary continuous functions of one variable. We are

interested in the functional dimension of the set F.

THEOREM 5.3.1. In every region D of the X,y plane there exists a
closed subregion G < D such that

r(F(G {p},{a:}) <1

Proof. By Theorem 4.5.1, in D there exists a closed subregion G* < D
such that the set of superpositions F(G*, { p;}, {¢;}) is closed (in the
uniform metric) in C (G¥*), and the functions { ¢; (x, ) } satisfy the condi-
tion: for any i, either grad [g; (x, ¥)] # 0 on G* or ¢q;(x, y) = const on G*.
We show that r(F(G* {p;}, {q; 1)) <1. By Banach’s open mapping
theorem, there exists a constant K such that for any superposition

N
2 P filgi(x, ) = f(x,»)e F(G*, {p;},{q;}) there are con-

i=]
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tinuous functions { /7 (¢) }, defined on the sets {¢; (G*)} and satisfying
the conditions

N
8) fG,9) = Y pi(x,0)f7 (a.(x,) for all (x,y)eG*;
=1
9) max max |f}()|>K max |f(x,))].
i teq; (G*) (x,y)eG*

Denote by F,, = F,,(G*,{p;},{4g,}) the set of superpositions f(x,y)
e F(G*, {p;},{4q;)) such that max |f(x,y)| < Je. By Theorem 5.2.1
(x,y) e G*

and (8), (9), there exist constants 4 and B such that if w (§) <(AAK)™*
then H,,; (F,,) < B(LK)?/5. Hence the functional dimension

1 K)2
og, log, 240?

r(F(G*, {p;},{q;}) <lim lim lim =1

Ao 020 -0 log,o

This proves the theorem.
From Theorem 5.3.1 and the properties of functional dimension (§ 1)
we have the following result, which is a stronger form of Theorem 4.6.1.

CorOLLARY 5.3.1. For any continuous functions {p;(x,y)} and
continuously differentiable functions { q;(x,y)} and every region D the
set of linear superpositions F (D, { p;},{ q;}) is nowhere dense in any space
of functions that has in every region G < D functional “dimension” greater
than 1.

Remark 5.3.1. All the results about linear superpositions of the form
N
> pi (%, ) fi (g; (x, »)) remain valid if we assume that { f; (¢) } are arbitrary
i=1

bounded measurable functions.

§ 4. Variation of superpositions of smooth functions

Let G, be a closed region of the space of the variables x,, x,, ..., X,
(n > 2). A function F(x) = F (x4, X5, ..., X,) 1s called a superposition of
order s generated by the functions of k& (k > 1) variables

Fovope (s oy s 1) (@=0,1,2, 0y 53 B =1,2, .., k)

if it is defined in G' by relations
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’ F :f(Q1>an "'an) >

-----------------------------

----------------------------

| 9B1.B20Bs+1 = y(B1.B2sesBs+1) 2

where y (B4, B2, ..., Bs+ ) is a function of the indices S, f,, ..., fs+1 and
takes one of the values 1, 2, ..., n. As before, we assume that the functions
{ @8y ps.....5, (T15 125 s 1) } are defined for all values of the arguments.

A superposition of any order, generated by functions of one variable,
is again a function of one variable. Therefore in this case (kK =1) we consider
superpositions of functions of one variable and the operation of addition,
that is, superpositions definable in the following way.

A function F(x) = F(xq, x5, ..., x,) (n>1) is called a superposition of
order s of the functions fp, ., (#) (@=0, 1, 2, ..., 5; §;=1, 2) if the following
relations are satisfied:

IEREE]

F = f(q;+4q5),

--------------------------------

9p1.820be = S 018208 (D120t T Dp1,posenfn2) - (VID)

...............................

8182, sBs+1 — N9(BLB2sBst+1) 2

where y (1, P2, ---» Ps+1) takes one of the values 1, 2, ..., n.

Note that we can represent as superpositions of the form (VII), for
example, all rational functions of xy, x,, ..., x, since we can write any
arithmetic operation by such superpositions, for example, u -v = ™+
- f(f1 (u) + 1> (v))

Let F (xy, x,, ..., X,) be a superposition of order s of the continuously

differentiable functions {-/bl,ﬂz,---,ﬂa (t1, 12, ..., ) } and  F(xq, x,, ..., X,
the superposition of the same form of the continuously differentiable func-

k
0 ty,...,1
[t = max Y sup UIRACE ’~~k)- ,
o, f1 fa =1 t 5tl
& = max sup ‘ (Plj’l ..... ﬂa(t17t2>'-->rk)l
%, B1,... Py t




.
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LEmMA 5.4.1. The inequality
su% ‘I;(xl,xz, e X)) = F (X, xp,00,x,) | <X A, 8)e.
holds, where the constant A (u, s) depends only on u and s.
Proof. We‘proceed by induction on s. For definiteness suppose that
k < 1. Having verified the statement of the lemma for s = 1 and having

made an appropriate inductive assumption for superpositions of order
s — 1, we have

su;(); | F (Xy, X0, 00 X)) — F(Xq, X5, 00, X,) |

(\‘/: ‘f(czl’ "':qwk) —'f(qla"'an)l + IQD(;DZIZa >;k)l

<. | max sup ]qﬁ1 ——q,,1| +e<lu-A(,s—1)e+e = A(u,s)e.

b1 xeG

(the last by the indictive assumption). This proves the lemma.
Further, let o (6) be the common modulus of continuity of all the func-

_ 0 iy by) , .
tions { IEAY k)} and, in addition, put

p ,
0 Ly oes )i
o = max Z sup _(P[fl ..... ﬁy_( 15 K)
o0 B1,..nfy i=1 ¢ at;
LEMMA 5.4.2. We have (for case k > 1)
Fxg,oo0n%)) = F(xy,.00,%,) = Z Doy (X1s X255 X,)
a, f1,.-s Ba

X (pﬂl,...ﬂa, (qﬂl ..... ﬁa,l (x19 Y xn)) cesy qﬁl ..... b’a’k (X1, saey xn))
+ R(X1,X5, .5 X,) »
where
| R(x1, %5, 0, x,) | < B(u, s, k) [¢' + (A, s)e)] e,
1

lpﬂl ..... ﬁa(xlaxza---axn) = H p
i=0 Cdpy,...piy1

B (u, s, k) is a constant depending only on u, s, k. For k = 1 the correspond-
ing equation is slightly different (see Chapter I, (1)) :
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= Z pﬂl ,,,,, ﬁa(x1>x29 ...,X”) @ﬁl,...,ﬁa(qﬂl....,ﬁa,l (xl’ ...,x,,)

Proof. As in the preceding lemma we proceed by induction on s.
Again for definiteness we limit ourselves to the case kK > 1. For s = 1
the assertion of the lemma is easily verified. We assume that it is true for
superpositions of order s — 1. By Lemma 5.4.1, for superpositions of
order s we have

F(xlr'-'axn "‘F(Xla"'axn) :f(C]la(Z29"'>Qk) _f(qla QZa'“a('Ik)

A ~ ~ ‘ k a ~
+ (@15 G20 s qi) = @(d1sq2s s @) + 2, o g —qp)
p1=1 04 py

+ A, e e +k-A(u,s)w (A, s)e)e.

Since gz, and g5, (B;=1,2, ..., k) are superpositions of order s — 1,
by the inductive hypothesis we have ‘

~ A
qﬁl - qﬁl = Z pﬂ] ..... ﬂa(XI:XZa .,.,X,,)
a>0
quﬂ:'},-'-,ﬂa

ST (Qﬁl ..... Barl (%op 5 By s, Bl o o3 dp1,....Bgk (X1, X2, .00, xn))

/
+ R (Xl, x?_: "-axn) >
where

| R(x{, %5, ..., x,) | <BGus—1,k)[¢' + o (A4 (u,s—1) e)] e,

N a—1 afﬂ P

4B, 2,...;ﬁi
Dgi.,.... /}a(xla“'axn) = H P
i=1 O04py,...pis1

(for a=1, ps, (x4, ..., x,) = 1). ~
When we now substative the expressions for the differences 98, — 4p,

in the formula for F — F above, we obtain the required representation of

the difference of two superpositions F — F. This proves the lemma.
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§ 5. Instability of the representation of functions
as superpositions of smooth functions

Let A be a set of functions of n variables and B a set of functions of k
variables (k <n). Suppose that a function F (x4, ..., x,) € A is in a region G,
of the space x, x,, ..., x, an s-fold superposition, generated by a system of
functions { fy, . 5 (t1, ..., 1) } of B.

We say that this superposition is (4, B)-stable in G, if every function

F(xy, ..., x,) € A can be represented in G, as the s-fold superposition of the

.....

max sup lf[fl ..... ﬂa(tla'-'atk) _ff)’l ..... ﬁa(tla---7tk)l
s By, ., Py t
< A sup }F(xl,...,x,,) — F(xy,...,x,) 1,
xeGp

where 1 is a constant not depending either on F or on the { f3, 8, |-
We denote by C(E,l(%) the space of all continuously differentiable func-
tions of k variables whose partial derivatives have modulus of continuity

@ () ( (5) — 0 as & — 0).

THEOREM 5.5.1.  Suppose that each function F (x, ..., x,) € A is in some
region D, of the space xq, ..., x,, a superposition of order s of functions of k
variables { fp,. .. g, (E1s s 1) | belonging to C((Dl(z;) (k<mn). If for any sub-
region G, < D, the functional “dimension” of A at F(xq,...,x,) €A
is greater than k, then the function F(x,, ..., x,) cannot be an (A, Cc(ol(%))-
stable superposition in any such region G < D,,.

Proof. Assume the contrary, that is, in a region G, < D, the function

F(xy, .., x,)€A 1s an (A, Cfol(%))-stable s-fold superposition of functions

" (1 : - -
{fop, (s s 1) 1 Of Cysy. Then any function F(xy, ..., x,) €A can

{fﬂl ,,,,, 8, (ty5 ..., ) } of Cc(ol(};) such that

max  sup |@g. 4 (t, ., t) | < A sup ll*: —F|,
oa; f1, .-, Bo t

xeGp

~

where @4, 5 = fpi....8, ~ Jpi....s, By Lemma 5.4.2 we have (for defi-
niteness, k > 1)
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F—F = Y Dppop, (X5 Xn)

a3 B, By

.....

where l R (x{, ..., x,) | <y(e)e, y(e) > 0ase — 0, and

g = max sup | Qg ﬁx(t],...,tk)|
a; f1,- ., By t

< A sup \F(xl,...,x,,) ~~F(x1,...,x,,)‘.

xeGp

That y (¢) — 0 as ¢ — 0 follows from the fact that as ¢ — 0 the quantity

k
1610 (ty ..o tp)
¢ = max Y sup | —lelNDUUR Q)

@3B, By i=1 o,

provided only that the modulus of continuity of the partial derivatives of the
functions { g, 5 (t1, ..., #) } is fixed. By 5.1.10 it follows that r (4, F)
< k in some subregion G, = D,. So we have obtained a contradiction
to the assumption that r (4, F) > k in any subregion G, < D, and this
proves the theorem.
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